Journal of Science & Cycling Breakthroughs in Cycling & Triathlon Sciences

Type of the Paper (Article, Review, Communication, etc.) 1

Performing high-intensity training following 2

prolonged exercise impacts durability-related 3

adaptations 4

- 5 Gabriele Gallo ^{1,2,*}, Bent Rønnestad ³, Øyvind Sandbakk ⁴, Knut Skovereng ⁴, Ed Maunder ², Daniel
- 6 Gotti ⁵, Leif Tallaksen ³, Emanuela Faelli ^{±,6*}, Piero Ruggeri-^{±,6}. <u>Simone di Gennaro¹, A</u>ndrea Meloni 7 ^{5,7}, Roberto Codella ^{5,7}, Luca Filipas^{5,7}
- 8

9 10

- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University 1 of Genoa, Genoa, Italy.
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New 2 Zealand
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, Lillehammer, 3 Norway
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian 4 University of Science and Technology, Trondheim, Norway.
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy. 5
- 11 12 13 14 15 16 17 18 6 Department of Experimental Medicine, University of Genoa, Genoa, Italy. 19
 - 7 Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy.
 - * Correspondence: (GG) gabriele.gallo.gg95@gmail.com.
- 21

 $\overline{20}$

22 Abstract: Durability refers to resilience to 23 the effects of prolonged exercise on 24 physiological profiling characteristics. The 25 aim of this study was to investigate if 26 performing high-intensity training (HIT) at 27 the end of long low-intensity training 28 sessions enhances durability. Twenty 29 trained cyclists were randomly allocated to 30 one of two four-week training interventions 31 (CON, n=10 and INT, n=10). INT performed 32 HIT at the end of long low-intensity 33 sessions, while CON performed HIT and 34 long low-intensity sessions on separate 35 days. Weekly training was matched for 36 overall volume and time in zones. An 37 incremental test to determine the first (VT_1) 38 and second (VT₂) ventilatory thresholds, 39 and a 5-min time trial (TT), was performed 40 in a rested state (-rest) and after 2.5-h 41 cycling (-2.5h) pre- and post-intervention. 42 Adaptations to VT₁-rest favored CON ($\eta_p^2 =$ 43 0.14), although this was not significant (p = 44 0.101). There was a greater improvement in 45 VT₂-rest in CON vs. INT (p = 0.015; η_p^2 = 0.29). Adaptations to TT-rest favored CON 46 47 $(n_p^2 = 0.06)$, although this was not

- 48 significant (p = 0.334). Adaptations to VT₁-
- 49 2.5h favored INT ($\eta_p^2 = 0.19$), although this
- 50 was not significant (p = 0.057), while no
- 51 group differences in adaptations to VT₂-2.5h
- 52 $(n_p^2 = 0.19)$ were observed. <u>Adaptations to</u>
- 53 TT-2.5h favored INT ($\eta_p^2 = 0.05$), although
- 54 this was not significant (p = 0.380).
- 55 Following prolonged exercise, VT₁ was
- 56 better maintained after INT vs. CON (p =
- 57 0.015; $\eta_p^2 = 0.29$). Group differences in this
- 58 effect for VT₂ and TT were not significant,
- 59 but there was a large and moderate effect
- 60 size in favor of INT (p = 0.058; $\eta_p^2 = 0.19$ and
- 61 p = 0.272; $\eta_p^2 = 0.08$). Adaptations to TT rest
- 62 and TT-2.5h were not different between
- 63 groups. These data indicate the timing of
- 64 HIT may impacts adaptations related to
- 65 durability in trained cyclists.
- 66
- 67
- 68

© 2020 fist author, licensee JSC. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ((http://creativecommons.org/licenses/by/4.o/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

