Ventilation measurement during training: Can breathing + heart rate tell us more?

> Stephen Seiler PhD University of Agder Kristiansand Norway

Oxygen Delivery + Carbon Dioxide Removal = <u>Vital Functions</u>

a = significantly different from CON; b = from 40:20s; c = from 30:30s

* = significantly different from the previous data point

OPEN CACCESS Freely available online

PLOS ONE

Comparing Continuous and Intermittent Exercise: An "Isoeffort" and "Isotime" Approach

Andrea Nicolò, Ilenia Bazzucchi, Jonida Haxhi, Francesco Felici, Massimo Sacchetti* Department of Human Movement, Sodal and Heakh Sciences, "Foro Italico" University, Rome, Italy

ORO ITALIC

ORO ITALIC

frequency and tidal volume during exercise. Eur J Appl Physiol (2022). https://doi.org/10.1007/s00421-022-05077-0

Breathing Frequency

+ Tidal Volume

Breathing Frequency Only

Running on a treadmill

Simultaneous Measurements	
BF max (From Cart)	BF max (From Shirt)
62	62
66	67
71	73
62	63
67	68
61	62
70	71
67	68
67	66
67	67
63	64
63	63
62	62
65	65
79	81
66.0	66.8
4.7	5.1

YES, it does!

BrF/TV relationship changes

But, total VE seems to stay ~constant

SHOULD we measure ventilation during training?

Would breathing frequency feedback inform the training process? We manage this relationship with our athletes

Adaptive Cellular Signals

Systemic Stress/Strain Responses

Gii UiA

Maximal exertion 20

ACCUMULATED side-effects

ACUTE

Responses

Stress

Load

NEUTRAL: Different combinations of intensity x deration can give same load!

• RPE/HR/Ventilation shift vs power/pace

- Efficiency deterioration (technique collapse)
- Greater pace variation when attempting steady-state
- Increased cortisol release (saliva or blood)
- Increased/altered muscle activation at same power or

pace

Strain (24h+ post training)

- Mood state change
- Decreased Readiness to Train
- Large HR/load Shift (up or down)
- Decreased Peak Blood La-
- Peak 6s power/CMJ decline
- Decreased resting HRV
- Decreased testosterone response
- Decreased cortisol response
- Decreased Libido

%BR Reserve

Professional cyclist, 7 x 7 min during a 6 hour ride

My current take on monitoring breathing:

1. Breathing frequency can be measured in a valid and repeatable manner in the field now (strain sensor).

2. The ideal technical solution will likely be **integration** of a **strain sensor in the team training kit**.

3. Ventilatory threshold testing can be performed in the field, alone or in parallel with Lactate profile as confirmation.

4. HR + BF monitoring, expressed as %BRR/%HRR (**Mobilization Index?**) can quantify internal stress better than HR alone during demanding sessions.

Tyme wear interface with Garmin head unit.

eskerrik asko!

In

J Appl Physiol 128: 1447–1449, 2020. First published February 13, 2020; doi:10.1152/japplphysiol.00814.2019.

VIEWPOINT

Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise

O Andrea Nicolò,¹ Samuele M. Marcora,² and Massimo Sacchetti¹
¹Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; and ²Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy

The $f_{\rm R}$ increase above the respiratory compensation point is not driven by metabolic acidosis

J Appl Physiol 128: 1456, 2020; doi:10.1152/japplphysiol.00285.2020.

VIEWPOINT

Last Word on Viewpoint: Time to reconsider how ventilation is regulated above the respiratory compensation point during incremental exercise

[©] Andrea Nicolò,¹ Samuele M. Marcora,² and Massimo Sacchetti¹

¹Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy; and ²Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy

A new model of ventilatory control during exercise

Nicolò, A., Sacchetti, M. Differential control of respiratory frequency and tidal volume during exercise. *Eur J Appl Physiol* (2023). https://doi.org/10.1007/s00421-022-05077-0

Zone Prediction - May 9th 2023

Threshold Test - VE vs Power - March 24th vs May 9th 2023

