

RELIABILITY AND SENSITIVITY OF THE NOTIO DEVICE AND AEROSCALE SERVICE TO QUANTIFY CYCLISTS' DRAG COEFFICIENTS IN OUTDOOR CONDITIONS

Thomas Lambolais Antoine Bruez, Thibault Dugenne, Thibaut Perron, Stéphane Perrey

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès

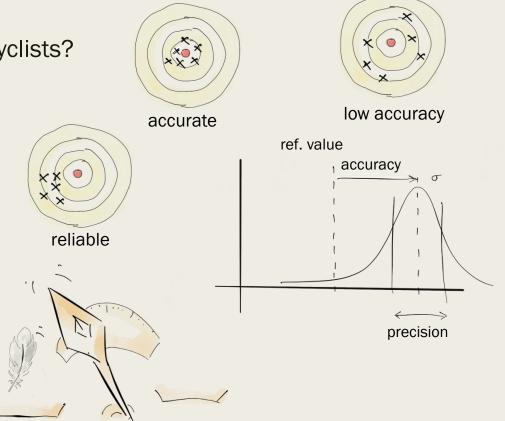
Science & Cycling, Bilbao, 28–29th June 2023

Outline

- Introduction: motivations, objectives
- Basic idea of these Device
- Notio konect
 - Experimental conditions and protocol
 - Results
- Aeroscale service
 - Adaptation of the idea
 - Experimental conditions and protocol
 - Results
- Conclusion

Motivations (1/3)

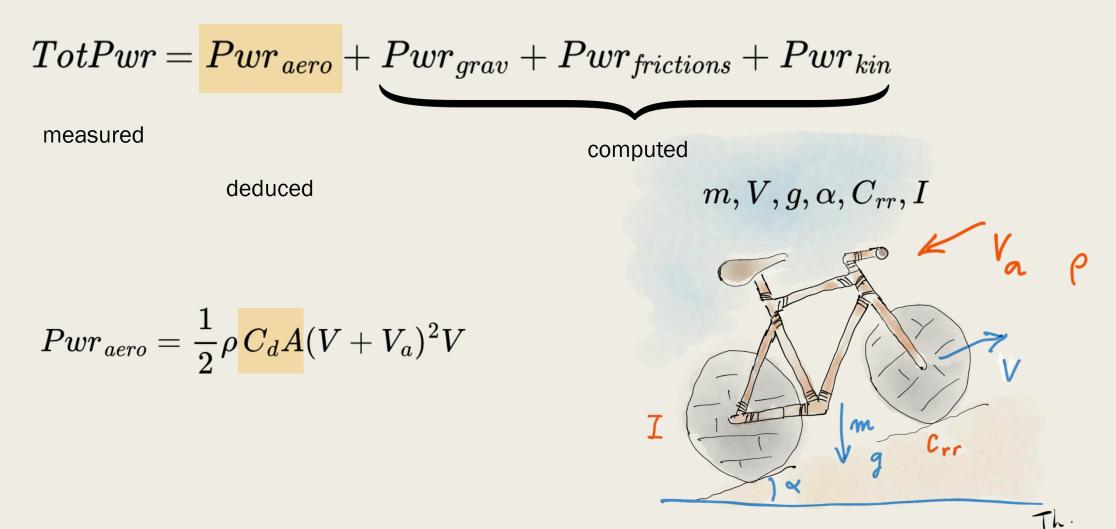
We are in 30152 BC and you still don't know everything is about acro


- Aerodynamics is crucial on flat roads: 76 % to 87 % of tot. power (120 to 400 W)
 - Wind tunnel sessions are expensive, time consuming
 - Track sessions may be far from real outdoor conditions
 - VE, mathematical and simulation models can hardly capture position degradations
 - Since 5 years, specific embedded devices appear
- **Objective:** evaluate the *quality* of two of such devices/services

Motivation (2/3). Quality / qualities?

Usefulness with regards to recreational, regular, elite cyclists?

- Accuracy (ISO 5725)
- Reliability:
 - Reliability (engineering): rate of failures/bugs
 - Reproducibility (precision)
- Sensitivity: ability to detect small variations
- Response times,
- Ease of use
- Robustness
- ... (autonomy, size, weight, ...)



sensitive

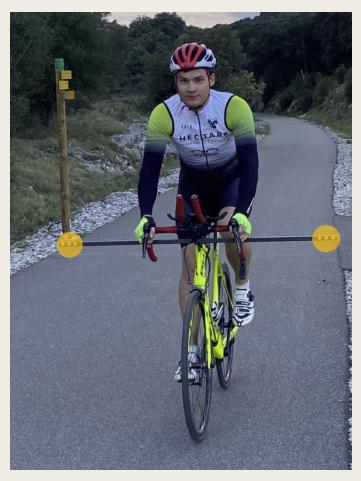
Motivation (3/3)

- Previous studies
- 1. Pedro L. V., Yago Alcalde, J., Gil-Cabrera, E. Talavera, A., Lucia, D. Barranco-Gil (2020), Validity of a novel device for realtime analysis of cyclists' drag area, Journal of Science and Medicine in Sport, Volume 23, Issue 4, Pages 421–425.
- 2. Kordi, M., Galis, G. E., Teun Terra, W. (2021). Reliability and Sensitivity of the Notio Konect to quantify Coefficient of Drag Area in Elite Track Cyclists. European Journal of Sport Science. 22. 1–15.
- Indoor only, Notio Konect only, elite riders only.
- [1] concludes for a good reliability (ICC=0.92) and poor sensitivity
- [2] concludes for a good reliability (ICC=0.99) and good sensitivity (1.2%)
- Objective (refined): evaluate reliability and sensitivity of Notio and Aeroscale, outdoor, for regular and irregular riders.

Basic idea of these devices

Reliability and Sensitivity of CdA Estimation Devices

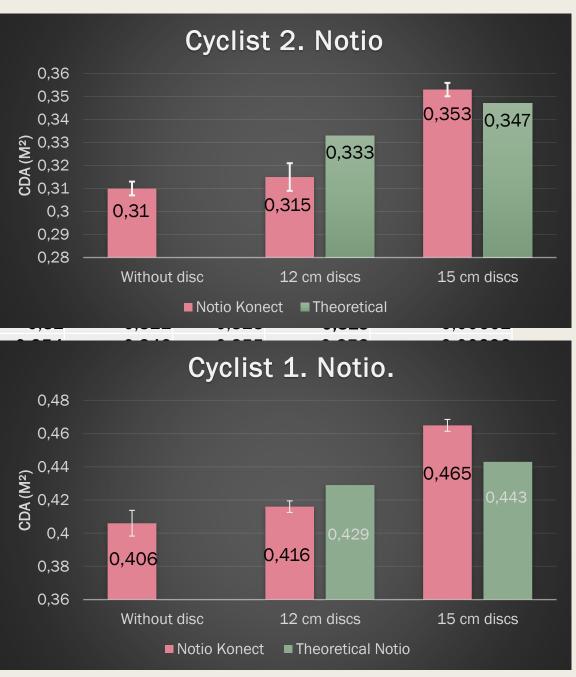
Notio Konect Device



- Measures: air speed, temperature, air density, humidity, vibrations.
 - Pitot tube
 - Barometer
 - Accelerometer, Gyroscope
 - Hygrometer, Thermometer
- Connected to:
 - Garmin + sensors measure: velocity, alt.
 - Powermeters: Power2max, assioma and shimano P9100
- Data processed by: Golden Cheetah Notio

Experimental conditions. Protocol

- 3 cyclists: 2 irregular (24 yo), 1 regular (52 yo). 170 cm, 188, 194 cm.
- 3 bicycles.
- 2 Garmin (1000, 1030). 2 Notio Konect.
- 3 x 5 runs.
- Run: 3 km forward + 3 km backward. => more than 110 km.
- Straight, flat road.
- Constant Speed ≈ 30 km/h, Cadence $\approx 85 rpm$, 80 < pwr < 280
- Runs 1: no disc (but bar)
 Runs 2: 12 cm discs
 + 0,023 m² CdA
 + 7 %
 Huns 3: 15 cm discs
 + 0.037 m² CdA
 + 13 %
- Constraints: same day, approx. same temp., no car.



Notio results

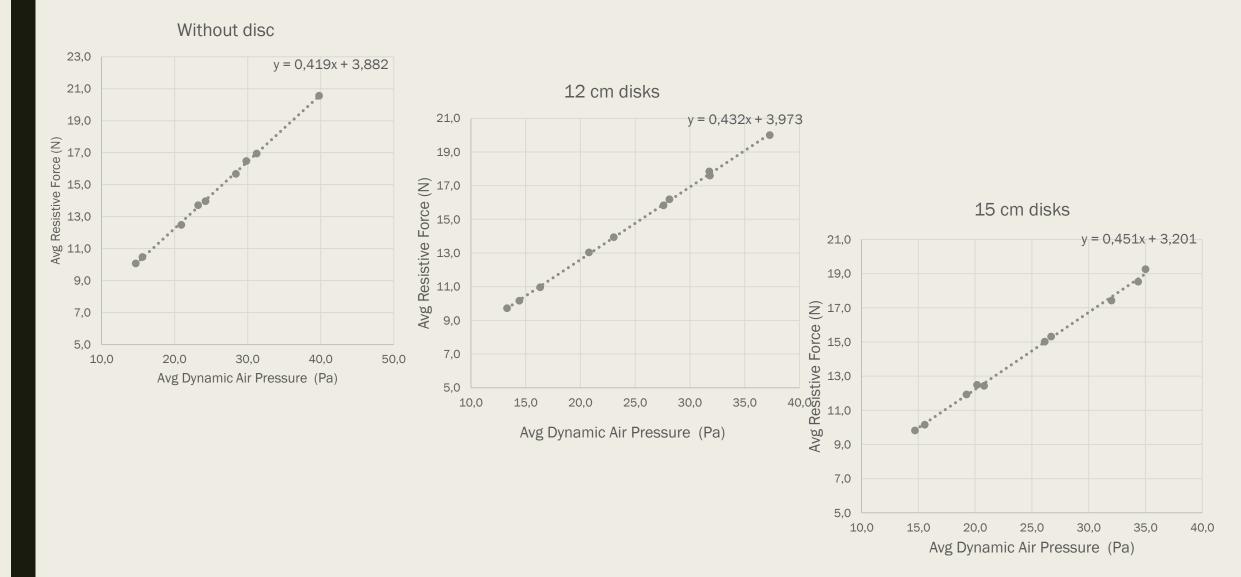
Cyclist 2. CdA (m²). Regular.

	run 1	run 2	run
Without disc	0,309	0,307	
12 cm Discs	0,316	0,311	
15 cm Discs	0,351	0,356	

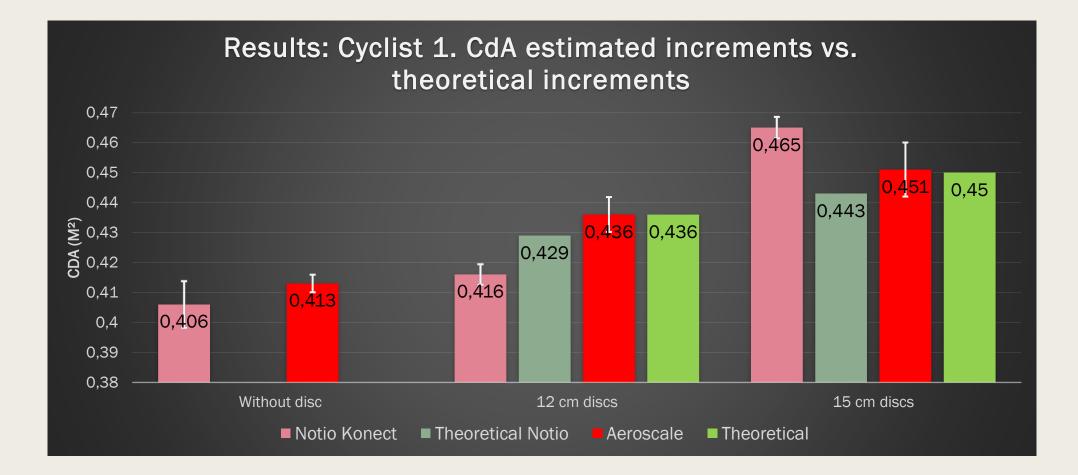
ICC

Aeroscale Experimental conditions. Protocol

- 1 cyclist: irregular (24 yo), 170 cm.
- 1 bicycle. (2 sets of wheels)
- No powermeter required and no bike computer
- Aeroscale device.
- 3 x 5 runs at incremental speeds.
- Run: 150 m forward + 150 m backward.
- Straight road., flat (3 cm of elevation)
- Initial speed: 15 to 35 km/h, cadence = 50–60 rpm
- Runs 1: no disc (but bar)
 Runs 2: 12 cm discs
 Runs 3: 15 cm discs
 + 0,023 m² CdA
 + 0.037 m² CdA
 13 %
- Constraints: same day, approx. same temp., no car.


Aeroscale adaptation of the initial idea

$$TotPwr = Pwr_{\it aero} + Pwr_{\it grav} + Pwr_{\it frictions} + Pwr_{\it kin}$$


$$rac{TotPwr-Pwr_{kin}-Pwr_{grav}}{V}=C_{d}A\,rac{1}{2}
ho(V+Va)^{2}+Crr imes mg$$

$$egin{array}{rll} F_{res} &=& C_dA imes rac{DynPressure}{p} + Crr imes mg \ y &=& a rac{x}{r} + b \end{array}$$

Aeroscale results

Results

Conclusion

- Notio and Aeroscale are both precise
 - (ICC = 0.97, σ = 0.003 or 1%) "In Notio and Aeroscale, we trust"
- Sensitivity:
 - Notio can hardly detect variations < 5 %
 - Aeroscale detects variations < 0.5 %
- "Real-time" notio promise: irrealistic

Thank Notio & Aeroscale engineers. Thank you for your attention