Coconut water; a sports drink alternative?

Brendan J. O'Brien ^{1*}, Leo R. Bell ¹, Declan Hennessy ², Joshua Denham ^{3,4}, and Carl Paton ⁵

Science & Cucling

¹ Institute of Health and Wellbeing, Federation University Australia, Mount Helen, Victoria, Australia; lr.bell@federation.edu.au (L.R.B.) ² School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Bundoora, Victoria, Australia; declan.hennessy@deakin.edu.au (D.H.) ³ School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia; Josh.Denham@usq.edu.au (J.D.) ⁴ Institute for Resilient Regions Centre, Centre for Health Research, Toowoomba, Queensland, Australia. ⁵ School of Health and Sport Science, Te Pukenga, The Eastern Institute of Technology, Hawkes Bay, New Zealand; CPaton@eit.ac.nz * Correspondence: b.obrien@federation.edu.au; Tel. +61 5352 7967

Introduction

- Endurance exercise can cause significant changes in body water content and electrolyte concentration.
- Potassium plays a crucial role in regulating intracellular fluid volume.
- Sweat excretion includes both sodium and potassium, with potassium loss being lower than sodium (1).
- Previous literature has rarely focused on the importance of maintaining potassium ulletconcentration for cycling performance (2-3).
- Beverages derived from coconut juice naturally have high potassium content. However, coconut water alone has low levels of carbohydrates and sodium.
- To enhance the ergogenic effect, the quantity of carbohydrates and sodium in coconut water may need to be increased.
- This study aimed to determine if consuming coconut water supplemented with carbohydrates and sodium, matching a commercially available sports drink, offers any additional performance benefits during endurance cycling.

Table 2. Mean (± 90% CI) percentage difference between treatments.

Coco-Sports mean% di confidence	fference ± 90% limit	ANOVA P- Value	Effect size (d)	Qualitative inference	
Glucose (mmol·L-1)	-3.0±3.2	0.29	0.31	Small	_
Lactate (mmol·L-1)	4.2±31.0	0.92	0.07	Trivial	
Sweat loss	-5.5±16.6	0.37	0.12	Trivial	
Heart rate (bpm)	0.5±2.6	0.77	0.04	Trivial	

Methods

- Study design: Randomized crossover trial with two exercise trials and different beverage consumption (sports drink and coconut-water-based beverage with added sodium and carbohydrate).
- **Participants:** Initially 23 experienced cyclists, with 19 completing both trials (15 males and 4 females, average age 30 ± 9 years, body mass 79 ± 11 kg, $VO_{2 peak} 55 \pm 8 mL.kg$ - $^{1}.min^{-1}$).
- **Pre-test:** Participants underwent anthropometrical and physiological profiling, familiarization with the performance measure, and an incremental exercise test on a cycling ergometer.
- Experimental trials: Participants completed two trials where they consumed either a commercial sports drink or coconut water, with the order randomized. The coconut water contained 1420 mg.L⁻¹ potassium, 448 mg.L⁻¹ sodium, and 66 g.L⁻¹ carbohydrate, while the sports drink contained 132 mg.L⁻¹ potassium, 458 mg.L⁻¹ sodium, and 55 g.L⁻¹ carbohydrate.
- Each trial included a 90-minute pre-load exercise to induce fatigue and dehydration, followed by a simulated 20-km time trial on a cycle ergometer.
- During the pre-load exercise, participants cycled at an intensity equivalent to 65-70% of their peak power output, with high-intensity intervals at specific time points.
- Heart rate, blood lactate, and glucose were measured during the pre-load exercise, and body mass was measured before and after to determine sweat loss.
- **Beverage treatment:** Participants consumed the experimental beverage at a rate of 2.5 mL per kilogram of body mass for each 15-minute segment of the pre-load exercise. Water was consumed ad libitum during the initial 20 km time trial. • Data analysis: Mean values with standard deviation were calculated, and differences between treatments were analysed using one-way analysis of variance (ANOVA). Effect size statistics (d) were also determined to assess the magnitude of the effects.

TT Time (Sec)	-1.0±2.9	0.83	0.06	Trivial
TT Power (W)	2.1±4.9	0.79	0.07	Trivial

Figure 1. Blood lactate concentrations over the 90-minute pre-load exercise task between the coconut and sports drink trials. Data are expressed as mean±SD.

175		
	-	

Figure 1. Simulated 20k-m time trial with segment profile

Results

- There were no significant differences between the coconut water and sports drink \bullet treatments for any of the measured variables (glucose, lactate, sweat loss, heart rate, time in the time trial, and average power).
- Effect size analysis indicated only trivial differences between treatments, except for blood glucose, which showed a small decrease (d=0.31) in the coconut water trial compared to the sports drink trial.

Table 1. Mean ± SD scores between treatments

Sports Drink

Figure 2. Heart rate response over the 90-minute pre-load exercise task between the coconut water and sports drink trials. Data are expressed as mean±SD.

Glucose (mmol·L ⁻¹)	5.5±0.5	5.3±0.6
Lactate (mmol·L ⁻¹)	3.9±2.2	3.8±2.3
Sweat loss (L)	1.2±0.4	1.3±0.5
Heart rate (bpm)	151±19	151±13
TT time (sec)	2863±467	2892±477
TT avg power (W)	208±58	204±60

Figure 3. Blood glucose concentration over the 90-minute pre-load exercise task between the coconut water and sports drink trials. Data are expressed as mean±SD.

Conclusion

• Consuming coconut water has a similar effect on cycling time trial performance and physiological responses to consuming a commercially available sports drink.

References

1. Lara B, Gallo-Salazar C, Puente C, Areces F, Salinero JJ, Del Coso J. Interindividual variability in sweat electrolyte concentration in marathoners. J Int Soc Sports Nutr. 2016;13:31.

2. Peart DJ, Hensby A, Shaw MP. Coconut Water Does Not Improve Markers of Hydration During Sub-maximal Exercise and Performance in a Subsequent Time Trial Compared with Water Alone. Int J Sport Nutr Exerc Metab. 2017;27(3):279-84.

3. Laitano O, Trangmar SJ, Marins DdM, Menezes ES, Reis GdS. Improved exercise capacity in the heat followed by coconut water consumption. Motriz: Revista de Educação Física. 2014;20(1):107-11.