

The use of velocity-based resistance training in cyclists. New perspectives on strength training in cyclists

David Barranco-Gil Universidad Europea de Madrid

david.barranco@universidadeuropea.es

WHO WE ARE?

- Research Group in Training
- European University of Madrid (Universidad Europea de Madrid - UEM)
- Faculty of Sports Sciences

WHO WE ARE?

WHO WE ARE. Multidisciplinary team

WHO WE ARE. Brief curriculum vitae

Dra. Lidia Brea. Graduate in Sports Science. Specialist in exercise and physical activity for health improvement.

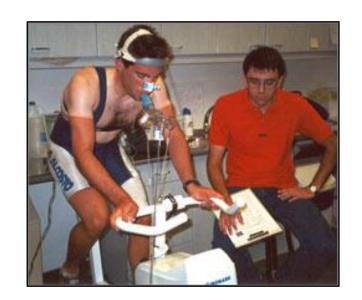
Dra. Almudena Montalvo. Graduada en Ciencias del Deporte y Fisioterapia y Máster en Alto Rº en Deportes Cíclicos. Especialista en fisioterapia deportiva y traumatológica.

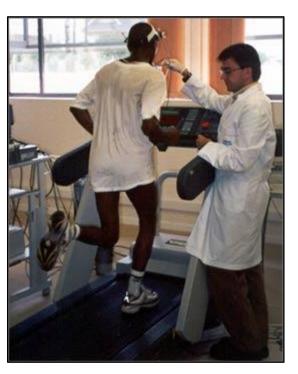
Jaime Gil. Graduate in Sports Science and Master in High R^o of the COE. Specialist in strength and resistance training and in new methodologies applied to sports training.

Dr. Pedro L. Valenzuela. Graduate in Sports Science. Master in Integrative Physiology. Specialist in Exercise Physiology and Sports Performance Analysis.

Carlos Revuelta. Graduate in Sports Science. Specialist in training and performance in athletics. PhD candidate in Cycling Performance

Dr. David Barranco. Graduate in Sports Science. Specialist in training, coaching and performance analysis in cycling.


WHO WE ARE. We have the best help



Dr. Alejandro Lucía.

Degree in Medicine.

Professor of Human and Exercise Physiology at the UEM.

What science tells us about this...

Strength training improves 5-min all-out performance following 185 min of cycling

Running head: "Strength training and cycling performance"

Bent R. Rønnestad¹, Ernst A. Hansen², and Truls Raastad²

¹Lillehammer University College, Lillehammer, Norway

²Norwegian School of Sport Sciences, Oslo, Norway

MAXIMAL STRENGTH TRAINING IMPROVES CYCLING ECONOMY IN COMPETITIVE CYCLISTS

Arnstein Sunde,¹ Øyvind Støren,^{1,2} Marius Bjerkaas,¹ Morten H. Larsen,¹ Jan Hoff,^{2,3} and Jan Helgerud^{2,4}

¹Department of Sport and Outdoor Life Studies, Telemark University College, Bø, Norway; ²Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; ³Department of Physical Medicine and Rehabilitation, St. Olavs University Hospital, Trondheim, Norway; and ⁴Hokksund Medical Rehabilitation Centre, Hokksund, Norway

Maximal Leg-Strength Training Improves Cycling Economy in Previously Untrained Men

DANIELLE J. LOVELESS, CLARE L. WEBER, LUKE J. HASELER, and DONALD A. SCHNEIDER

School of Physiotherapy and Exercise Science, Gold Coast Campus, Griffith University, Queensland, AUSTRALIA

In-season strength maintenance training increases welltrained cyclists' performance

Scand J Med Sci Sports 2015: 25: e89–e98 doi: 10.1111/sms.12257

Published by John Wiley & Sons Ltd

SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS

Strength training improves performance and pedaling characteristics in elite cyclists

B. R. Rønnestad¹, J. Hansen¹, I. Hollan², S. Ellefsen¹

¹Section for Sport Science, Lillehammer University College, Lillehammer, Norway, ²Hospital for Rheumatic Diseases, Lillehammer, Norway

Corresponding author: Bent R. Rønnestad, PhD, Section for Sport Science, Lillehammer University College, PB. 952, Lillehammer 2604, Norway. Tel: +47 61288193, Fax: +47 61288200, E-mail: bent.ronnestad@hil.no

Accepted for publication 23 April 2014

Running head: "Strength maintenance training in cyclists"

Bent R. Rønnestad¹, Ernst Albin Hansen², and Truls Raastad²

¹Lillehammer University College, Lillehammer, Norway

²Norwegian School of Sport Sciences, Oslo, Norway

The Effect of Maximal- & Explosive-Strength Training on Performance Indicators in Cyclists

Submission type: Original Investigation

Kris Beattie¹, Brian P. Carson¹, Mark Lyons¹ and Ian C. Kenny¹
¹Department of Physical Education and Sport Sciences, University of Limerick, Ireland.

doi: 10.1111/sms.12468

Published by John Wiley & Sons Ltd

MEDICINE & SCIENCE
IN SPORTS

Strength training improves cycling performance, fractional utilization of VO_{2max} and cycling economy in female cyclists

O. Vikmoen¹*, S. Ellefsen¹*, Ø. Trøen¹, I. Hollan²*, M. Hanestadhaugen³*, T. Raastad⁴, B. R. Rønnestad¹*

¹Section of Sports Sciences, Lillehammer University College, Lillehammer, Norway, ²Hospital for Rheumatic Diseases, Lillehammer, Norway, ³Department of Pathology, Innlandet Hospital Trust, Lillehammer, Norway, ⁴Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway

Corresponding author: Olav Vikmoen, M.Sc, Section of Sports Sciences, Lillehammer University College, PO Box 952, N-2604 Lillehammer, Norway. Tel: +47 61288315, Fax: +47 61288200, E-mail: olav.vikmoen@hil.no

Accepted for publication 10 March 2015

Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes

Olav Vikmoen¹, Bent R. Rønnestad¹, Stian Ellefsen¹ & Truls Raastad²

- 1 Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway
- 2 Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway

10 weeks of heavy strength training improves performance-related measurements in elite cyclists

Bent R. Rønnestad, Joar Hansen and Håvard Nygaard

Section for Sport Science, Lillehammer University College, Lillehammer, Norway

Optimizing strength training for running and cycling endurance performance – a review

Running head: "Strength training and endurance performance"

Bent R. Rønnestad¹, Iñigo Mujika^{2,3}

Bent Rønnestad

¹ Lillehammer University College, Section for Sport Science, Lillehammer, Norway

² Department of Physiology, Faculty of Medicine and Odontology, University of the Basque Country, Leioa, Basque Country

³ School of Kinesiology and Health Research Center, Faculty of Medicine, Finis Terrae University, Santiago, Chile.

Rønnestad's Classic Work...

			Prepar	atory period			Competition period
	Week	1-3	Week	c 4-6	Week	7-12	Week 13-25
	1. Bout	2. Bout	1. Bout	2. Bout	1. Bout	2. Bout	1. Bout
Half squat	3x10RM	3x6RM	3x8RM	3x5RM	3x6RM	3x4RM	2x5 reps @80-85% of 1RM
One-legged leg press	3x10RM	3x6RM	3x8RM	3x5RM	3x6RM	3x4RM	2x5 reps @80-85% of 1RM
One-legged hip flexion	3x10RM	3x6RM	3x8RM	3x5RM	3x6RM	3x4RM	1x6RM
Ankle plantar flexion	3x10RM	3x6RM	3x8RM	3x5RM	3x6RM	3x4RM	1x6RM

Rønnestad BR, Hansen EA, Raastad T. *In-season strength maintenance training increases well-trained cyclists' performance*. Eur J Appl Physiol. 2010 Dec;110(6):1269-82.

NEW PERSPECTIVES IN STRENGTH TRAINING... VBRT (velocity based resistance training)

Guerriero A, Varalda C, Piacentini MF. The role of velocity based training in the strength periodization for modern athletes. *J Funct Morphol Kinesiol*. 2018;3(4). doi:10.3390/jfmk3040055

González-Badillo J, Sánchez-Medina L. Movement velocity as a measure of loading intensity in resistance training. *Int J Sports Med.* 2010;31:347-352.

Banyard HG, Nosaka K, Vernon AD, Gregory Haff G. The reliability of individualized load–velocity profiles. *Int J Sports Physiol Perform*. 2018;13(6):763-769. doi:10.1123/ijspp.2017-0610

Orange ST, Metcalfe JW, Robinson A, Applegarth MJ, Liefeith A. Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. *Int J Sports Physiol Perform*. 2019;(October):1-8. doi:10.1123/ijspp.2019-0058

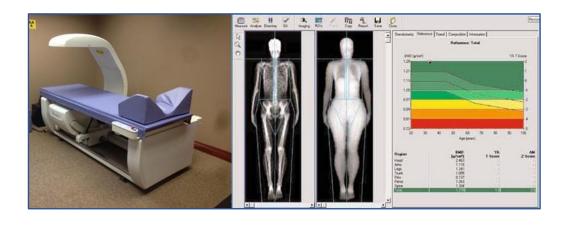
NEW PERSPECTIVES IN STRENGTH TRAINING... VBRT (velocity based resistance training)

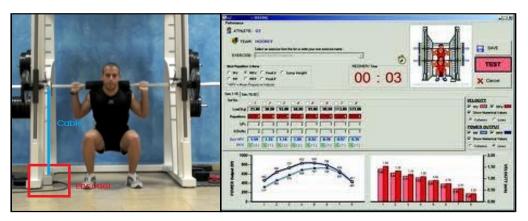
Dorrell HF, Smith MF, Gee TI. Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. *J strength Cond Res.* 2020;34(1):46-53. doi:10.1519/JSC.0000000000003089

Rauch J, Loturco I, Cheesman N, et al. Similar Strength and Power Adaptations between Two Different Velocity-Based Training Regimens in Collegiate Female Volleyball Players. *Sports*. 2018;6(4):163. doi:10.3390/sports6040163

Loturco I, Nakamura F, Kobal R, et al. Traditional Periodization versus Optimum Training Load Applied to Soccer Players: Effects on Neuromuscular Abilities. *Int J Sports Med.* 2016;37(13):1051-1059. doi:10.1055/s-0042-107249

STATE OF THE ART...


Traditional Versus Optimum Power Load Training in Professional Cyclists: A Randomized Controlled Trial

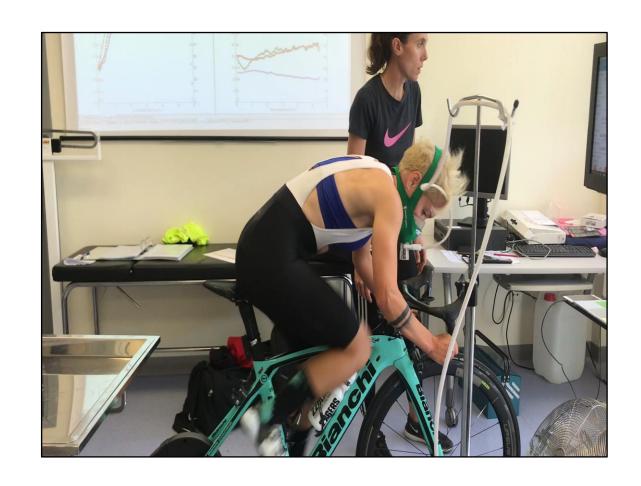

Jaime Gil-Cabrera, Pedro L. Valenzuela, Lidia B. Alejo, Eduardo Talavera, Almudena Montalvo-Pérez, Alejandro Lucia, and David Barranco-Gil

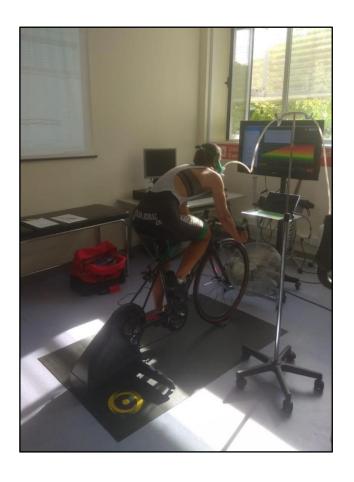
Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial

Almudena Montalvo-Pérez¹, Lidia B. Alejo^{1,2*}, Pedro L. Valenzuela^{3,4}, Jaime Gil-Cabrera¹, Eduardo Talavera¹, Alejandro Luia^{1,2} and David Barranco-Gil^{1*}

¹ Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain, ² Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain, ³ Department of Systems Biology, University of Alcalá, Madrid, Spain, ⁴ Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain





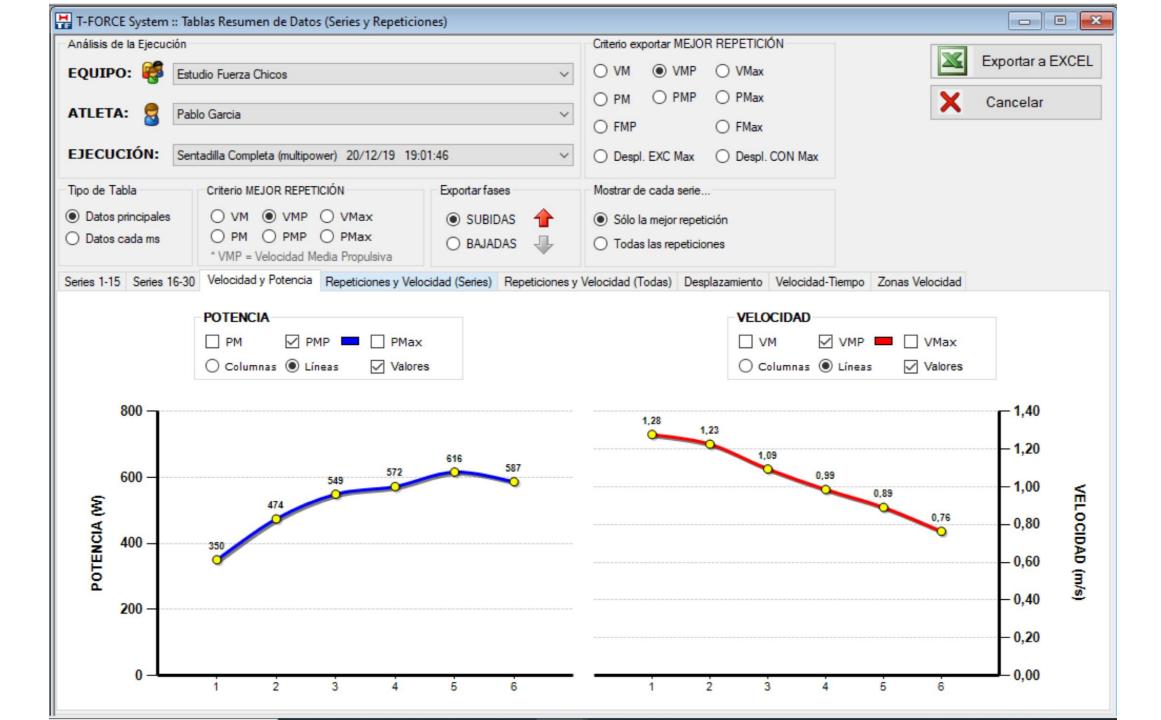


- Exercises are started with 20 kilograms
- Increasing the load by 10 kg per set
- Until detecting the maximum
 PO load
- Once identified, "repetitions test" at that load until loss of 10% of speed in the set

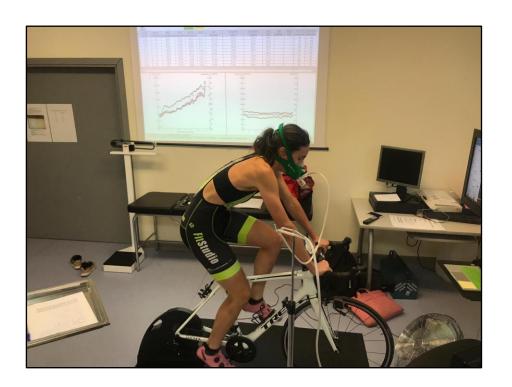
Split Squat en Multipower (Smith Machine)

b. Posición final

- 2. Sentadilla en *Multipower* (Smith Machine)
 - a. Posición inicial
 - b. Posición final


- 3. Empujes de cadera o *Hip Thrust* en *Multipower (Smith Machine)*
 - a. Posición inicial
 - b. Posición final





SAMPLE

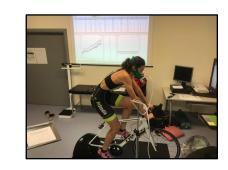
22 men / 19±1 age VO_{2max}: 75,5±6,0 ml· kg⁻¹· min⁻¹ TRT (n=11) VBRT (n=11)

17 women / 25±7 age VO_{2max}: 55,0±5,8 ml· kg⁻¹· min⁻¹ TRT (n=8) VBRT (n=9)

Traditional Versus Optimum Power Load Training in Professional Cyclists: A Randomized Controlled Trial

Jaime Gil-Cabrera, Pedro L. Valenzuela, Lidia B. Alejo, Eduardo Talavera, Almudena Montalvo-Pérez, Alejandro Lucia, and David Barranco-Gil

- 2 weeks of familiarization
- 2 sessions per week
- 48 hours recovery between sessions
- Same time of the day
- All sessions supervised
- Attend 90% of sessions
- RE-TEST WEEK 4


Table 1 Characteristics of the Traditional and Velocity-Based Resistance Training Interventions

		Week	s 1–3	Weel	cs 4–6	Weeks 7-8			
Intervention	Variable	Day 1	Day 2	Day 1	Day 2	Day 1	Day 2		
TRT	Exercises	Squat, hip t	hrust, and lunge						
	Training, sets×reps	3×10	3×6	3×8	3×5	3×6	3×4		
	Load, %RM	75%	85%	80%	87%	85%	90%		
	Rest, s	120							
OPT	Exercises	Squat, hip t	hrust, and lunge						
	Training, sets×reps	3×maximum number of repetitions at >90% OPL (8 [3] reps)							
	Load, %RM	OPL (65%	[10%])						
	Rest, s	120							

Abbreviations: OPL, optimum power load; OPT, optimum power load training; reps, repetitions; RM, repetition maximum; TRT, traditional resistance training.

Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial

Almudena Montalvo-Pérez¹, Lidia B. Alejo^{1,2*}, Pedro L. Valenzuela^{3,4}, Jaime Gil-Cabrera¹, Eduardo Talavera¹, Alejandro Luia^{1,2} and David Barranco-Gil^{1*}

- 2 weeks of familiarization
- 2 sessions per week
- 48 hours recovery between sessions
- Same time of the day
- All sessions supervised
- Attend 90% of sessions
- O NO RE-TEST

TABLE 1 | Characteristics of the traditional (TRT) and velocity-based resistance training (VBRT) interventions.

Intervention	Variable	Weel	ks 1–2	Weeks 3–6			
		Day 1	Day 2	Day 1	Day 2		
		Exercises: squ	Exercises: squat, hip thrust, and split squat				
TRT	Training (sets × repetitions)	3 × 8	3 × 5	3 × 6	3 × 4		
	Load (% of 1RM)	80%	87%	85%	90%		
	Rest between sets (s)	120					
VBRT	Training (sets × repetitions)	3 × maximum n	umber or repetitions at > 9	0% of OPL (8 \pm 3 repetitio	ns)		
	Load (% of 1RM)	OPL (65 ± 10%)				
	Rest between sets (s)	120					

OPL, optimum power load; RM, repetition maximum.

Traditional Versus Optimum Power Load Training in Professional Cyclists: A Randomized Controlled Trial

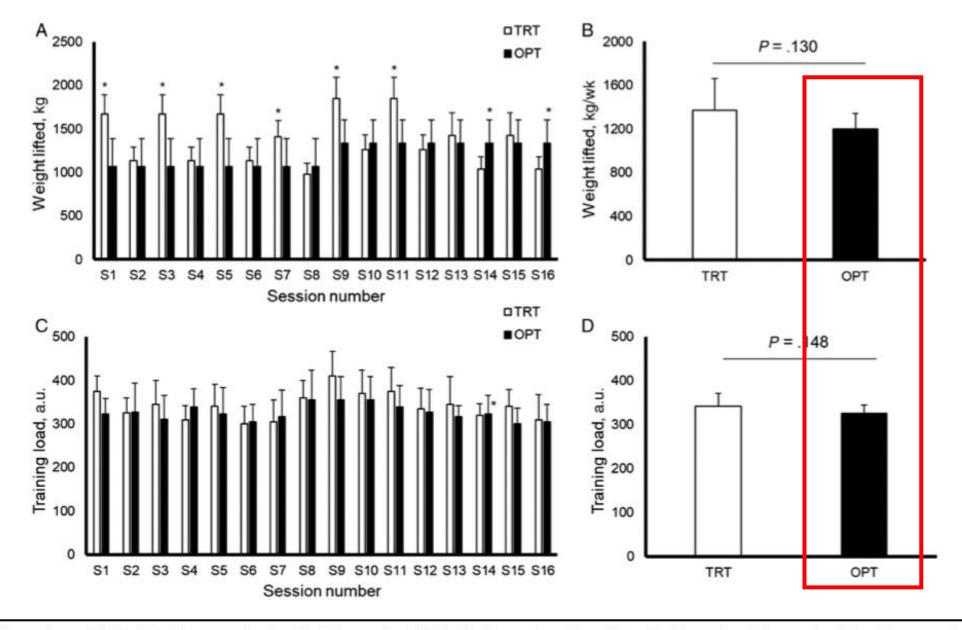
Jaime Gil-Cabrera, Pedro L. Valenzuela, Lidia B. Alejo, Eduardo Talavera, Almudena Montalvo-Pérez, Alejandro Lucia, and David Barranco-Gil

Table 2 Body-Composition Outcomes

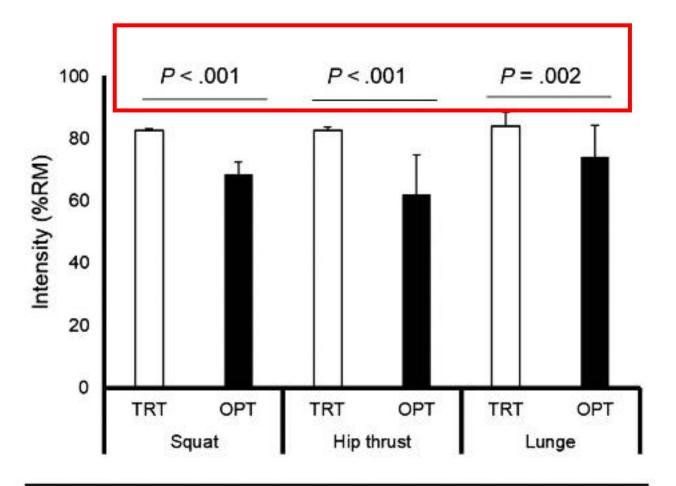
				Within- group	Time	Group × time	
End point	Group	Baseline	Postintervention	P	P	P	Effect size (η_p^2)
Body mass, kg	TRT	64.1 (6.1)	64.7 (5.8)	.130	.404	.489	.027
	OPT	62.9 (6.0)	62.9 (5.7)	.944			
Fat mass, kg	TRT	11.7 (3.3)	11.1 (3.1)	.041	.005	.668	.010
	OPT	11.2 (2.6)	10.7 (3.0)	.086			
Muscle mass, kg	TRT	48.8 (3.6)	50.8 (3.9)	.003	<.001	.453	.032
	OPT	48.2 (4.0)	49.8 (4.3)	.008			
BMD, g/cm ²	TRT	1.15 (0.09)	1.14 (0.07)	.203	.331	.290	.062
	OPT	1.09 (0.09)	1.17 (0.22)	.889			
BMC, g	TRT	2.37 (0.29)	2.38 (0.28)	.929	.228	.603	.015
	OPT	2.22 (0.24)	2.24 (0.23)	.213			

Abbreviations: BMC, bone mineral content; BMD, bone mineral density; OPT, optimum power load training; TRT, traditional resistance training. Note: Data are presented as mean (SD). Significant P values are presented in bold.

Table 3 Strength-Related Outcomes


End point	Group	Baseline	Postintervention	Within-group <i>P</i>	Time <i>P</i>	Group \times time P	Effect size (η_p^2)
Squat 1RM, kg	TRT	74 (13)	92 (14)	.005	<.001	.227	.080
	OPT	69 (11)	94 (10)	.008			
Squat MPP, W	TRT	475 (84)	584 (98)	.008	<.001	.370	.045
	OPT	436 (104)	584 (109)	.008			
Hip thrust 1RM, kg	TRT	89 (14)	144 (24)	.003	<.001	.093	.149
	OPT	91 (24)	124 (28)	.008			
Hip thrust MPP, W	TRT	421 (67)	694 (122)	.003	<.001	.275	.066
	OPT	381 (133)	585 (143)	.015			
Lunge 1RM, kg	TRT	60 (14)	83 (8)	.003	<.001	.144	.115
	OPT	54 (11)	84 (14)	.008		l	
Lunge MPP, W	TRT	388 (70)	500 (93)	.003	<.001	.032	.232
	OPT	298 (69)	500 (126)	.008			

Abbreviations: 1RM, 1-repetition maximum; MPP, mean propulsive power; OPT, optimum power load training; TRT, traditional resistance training. Note: Data are presented as mean (SD). Significant P values are presented in bold.


Table 4 Endurance-Related Outcomes

End point	Group	Baseline	Postintervention	Within-group <i>P</i>	Time <i>P</i>	Group × time	Effect size (η²)
PPO, W	TRT	387 (30)	396 (30)	.130	.022	.902	.001
	OPT	393 (38)	403 (28)	.260			
PPO, W/kg	TRT	6.06 (0.59)	6.14 (0.54)	.286	.054	.443	.033
	OPT	6.28 (0.57)	6.46 (0.53)	.110			
VT, W	TRT	238 (20)	239 (18)	.959	.376	.556	.020
	OPT	240 (24)	246 (28)	.259			
VT, W/kg	TRT	3.75 (0.50)	3.72 (0.37)	.505	.655	.413	.038
	OPT	3.84 (0.39)	3.92 (0.34)	.343			
RCP, W	TRT	327 (23)	338 (21)	.056	.009	.601	.015
	OPT	337 (32)	352 (24)	.066			
RCP, W/kg	TRT	5.13 (0.51)	5.25 (0.53)	.154	.036	.423	.036
	OPT	5.37 (0.45)	5.62 (0.49)	.173			
VO ₂ peak, mL/kg/min	TRT	74.5 (6.0)	72.8 (6.4)	.328	.859	.161	.106
	OPT	76.8 (6.0)	78.0 (7.2)	.236			
8-min TT, W	TRT	304 (30)	318 (24)	.026	.001	.651	.012
	OPT	322 (31)	333 (31)	.015			
8-min TT, W/kg	TRT	4.75 (0.44)	4.91 (0.46)	.056	.015	.979	.000
	OPT	5.14 (0.43)	5.30 (0.39)	.066			
8-min TT, %VO ₂ peak	TRT	90.4 (1.8)	91.8 (4.4)	.328	.859	.405	.039
	OPT	92.0 (5.0)	91.1 (4.7)	.767			

Abbreviations: OPT, optimum power load training; PPO, peak power output; RCP, respiratory compensation point; TRT, traditional resistance training; TT, time trial; VO₂peak, peak oxygen uptake; VT, ventilatory threshold. Note: Data are presented as mean (SD). Significant P values are presented in bold.

Figure 2 — Weight lifted (computed as load [in kilograms] multiplied by the number of repetitions) during each training session (A) and average of all sessions (B) and training load (computed as session length [in minutes] multiplied by rating of perceived exertion [assessed on a 1–10 Borg scale]) during each training session (C) and average of all sessions (D). OPT indicates optimum power load training; TRT, traditional resistance training. Significant differences between conditions: *P<.001.

Figure 1 — Average relative intensity (expressed as percentage of 1RM) during all training sessions for the 3 exercises performed. OPT indicates optimum power load training; RM, repetition maximum; TRT, traditional resistance training.

CONCLUSIONS

- Both groups:
 - Improvements in body composition
 - Improvements in strength-power values
 - Improved RCP values
 - TT-8 min (4-5% better)
 - Similar TL (weight and RPE)
- Group VBRT (lower % of work intensity)

Traditional Versus Velocity-Based Resistance Training in Competitive Female Cyclists: A Randomized Controlled Trial

Almudena Montalvo-Pérez¹, Lidia B. Alejo^{1,2*}, Pedro L. Valenzuela^{3,4}, Jaime Gil-Cabrera¹, Eduardo Talavera¹, Alejandro Luia^{1,2} and David Barranco-Gil^{1*}

TABLE 2 | Results of body composition.

Outcome	Group	Baseline	Effect size for between-group differences at baseline (Hedges' g)	Post- intervention	Within-group comparison (baseline vs. post-intervention) p value	Time effect, p value	Group by time interaction effect, p value	Effect size for between-group differences in intervention effects (ηρ²)
Body mass (kg)	TRT	58.3 ± 6.1	0.073	59.4 ± 7.0	0.079	0.019	0.920	0.001
	VBRT	57.8 ± 6.9		58.8 ± 6.6	0.084			
Fat mass (kg)	TRT	16.6 ± 4.4	0.355	17.1 ± 4.0	0.198	0.612	0.170	0.122
	VBRT	15.3 ± 2.4		15.0 ± 2.6	0.511			
Muscle mass (kg)	TRT	39.5 ± 4.8	0.151	40.0 ± 6.1	0.398	0.058	0.446	0.039
	VBRT	40.3 ± 5.2		41.5 ± 5.4	0.057			
BMD (g cm ⁻²)	TRT	1.15 ± 0.10	0.368	1.14 ± 0.10	0.345	0.838	0.245	0.089
	VBRT	1.18 ± 0.05		1.18 ± 0.05	0.477			
BMC (g)	TRT	2.24 ± 0.41	0.078	2.24 ± 0.39	0.849	0.751	0.968	0.000
	VBRT	2.27 ± 0.32		2.27 ± 0.30	0.794			

Data are mean ± SD and significant p values are in bold. BMC, bone mineral content; BMD, bone mineral density; TRT, traditional resistance training; VBRT, velocity-based resistance training.

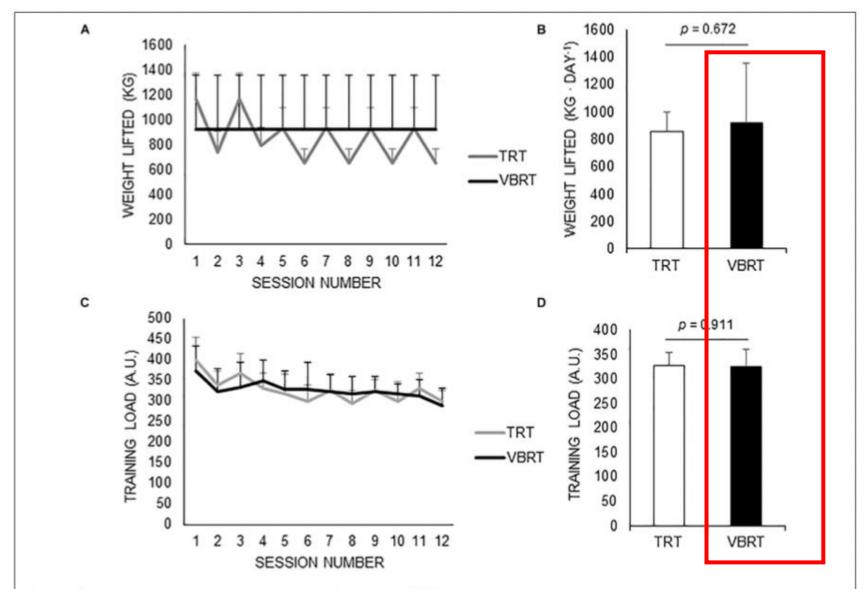


FIGURE 1 | Training loads by group. Total weight lifted in kg (A) or in kg·day⁻¹ (B) during the traditional (TRT) or velocity-based resistance training (VBRT) sessions. Total internal training loads [in arbitrary units (A.U.)] by group across TRT/VBRT sessions (C) and during outdoor cycling sessions (D). TRT, traditional resistance training; VBRT, velocity-based resistance training.

TABLE 3 | Results of muscle strength/power-related outcomes.

Outcome	Group	Baseline	Effect size for between-group differences at baseline (Hedges' g)	Post- intervention	Within-group comparison (baseline vs. post-intervention) p value	Time effect, p value	Group by time interaction effect, p value	Effect size for between-group differences in intervention effects (η _ρ ²)
Squat 1RM (kg)	TRT	48 ± 13	0.373	65 ± 6	0.001	<0.001	0.990	0.000
	VBRT	54 ± 17		70 ± 12	<0.001			
Squat MMP (W)	TRT	285 ± 98	0.553	362 ± 71	0.002	<0.001	0.499	0.031
	VBRT	345 ± 107		442 ± 81	<0.001			
Squat MMP [W/lower body muscle mass (kg)]	TRT	20 ± 5	0.701	27 ± 5	0.001	<0.001	0.846	0.003
	VBRT	25 ± 8		31 ± 6	<0.001			
Hip thrust 1RM (kg)	TRT	62 ± 19	0.109	84 ± 15	<0.001	<0.001	0.015	0.336
	VBRT	60 ± 16		$99 \pm 9 \uparrow$	<0.001		11 1	
Hip thrust MMP (W)	TRT	278 ± 98	0.054	363 ± 71	0.003	<0.001	0.015	0.335
	VBRT	283 ± 78		$459 \pm 71 $ †	<0.001		11 1	
Hip thrust MMP [W/lower body muscle mass (kg)]	TRT	20 ± 4	0.000	27 ± 4	0.001	<0.001	0.042	0.247
	VBRT	20 ± 6		$32 \pm 3 \uparrow$	<0.001			
Split squat 1RM (kg)	TRT	43 ± 10	0.000	59 ± 11	0.001	<0.001	0.386	0.050
	VBRT	43 ± 9		64 ± 13	<0.001			
Split squat MMP (W)	TRT	228 ± 74	0.503	328 ± 82	0.007	<0.001	0.590	0.020
	VBRT	264 ± 62		386 ± 95	<0.001			
Split squat MMP [W/lower body muscle mass (kg)]	TRT	17 ± 5	0.463	24 ± 4	0.001	<0.001	0.809	0.004
	VBRT	20 ± 7		27 ± 8	<0.001			

Data are mean \pm SD and significant p values are in bold. Symbols: $\pm p < 0.05$ vs. TRT at the same time point. 1RM, one-repetition maximum; MMP, maximum mean power output; TRT, traditional resistance training; VBRT, velocity-based resistance training.

TABLE 4 | Results of endurance performance-related outcomes.

Outcome	Group	Baseline	Effect size for between-group differences at baseline (Hedges' g)	Post- intervention	Within-group comparison (baseline vs. post-intervention)	Time effect, p value	Group by time interaction effect, p value	Effect size for between-group differences in intervention effects (ηρ²)
PPO								
W	TRT	288 ± 47	0.071	296 ± 52	0.138	0.046	0.913	0.001
	VBRT	291 ± 33		298 ± 36	0.154			
W/total body mass (kg)	TRT	4.8 ± 0.5	0.468	4.9 ± 0.6	0.122	0.177	0.347	0.059
	VBRT	5.0 ± 0.3		5.0 ± 0.4	0.751			
W/lower-body muscle mass (kg)	TRT	21.0 ± 1.1	0.111	21.7 ± 1.5	0.152	0.120	0.592	0.020
	VBRT	20.8 ± 2.1		21.2 ± 1.8	0.434			
8-min TT performance	(average	PO)					1	
W	TRT	224 ± 43	0.241	230 ± 40	0.099	0.003	0.361	0.056
	VBRT	215 ± 27		225 ± 26	0.006			
W/total body mass (kg)	TRT	3.7 ± 0.5	0.561	3.8 ± 0.5	0.686	0.134	0.340	0.061
	VBRT	3.3 ± 0.8		3.5 ± 0.8	0.080		_	
W/lower-body muscle mass (kg)	TRT	13.0 ± 0.8	0.388	16.9 ± 1.1	< 0.001	<0.001	0.238	0.091
	VBRT	12.5 ± 1.5		16.0 ± 1.5	< 0.001			

CONCLUSIONS

- Both groups:
 - Improvements in body composition
 - Improvements in strength-power values
 - Better values PPO
 - TT-8 min (4-5% better)
 - Similar TL (weight and RPE)

International Journal of Sports Physiology and Performance, (Ahead of Print) https://doi.org/10.1123/ijspp.2020-0305
© 2021 Human Kinetics, Inc.

On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial

STATE OF THE ART...

Article Title: Effects of Cycling Training at Imposed Low Cadences - A Systematic Review

Authors: Ernst A. Hansen¹ and Bent R. Rønnestad²

Affiliations: ¹Research Interest Group of Physical Activity and Human Performance, SMI[®], Department of Health Science and Technology, Aalborg University, Denmark. ²Section for Sport Science, Lillehammer University College, Lillehammer, Norway.

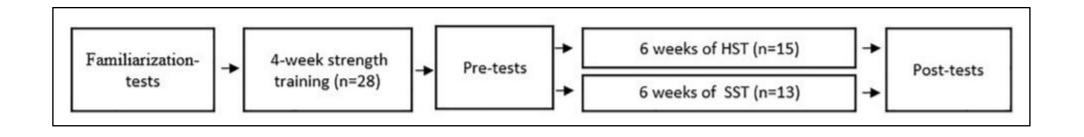
Journal: International Journal of Sports Physiology and Performance

Article Title: Effects of Cycling Training at Imposed Low Cadences - A Systematic Review

Authors: Ernst A. Hansen¹ and Bent R. Rønnestad²

- Studies show no difference between low and high cadences.
- There is no clear performance improvement effect of low cadence or even indicate a superior effect of CFC training.

Currently there is no definitive and solid evidence to prescribe training at low cadences (below 60 rpm).


STATE OF THE ART...

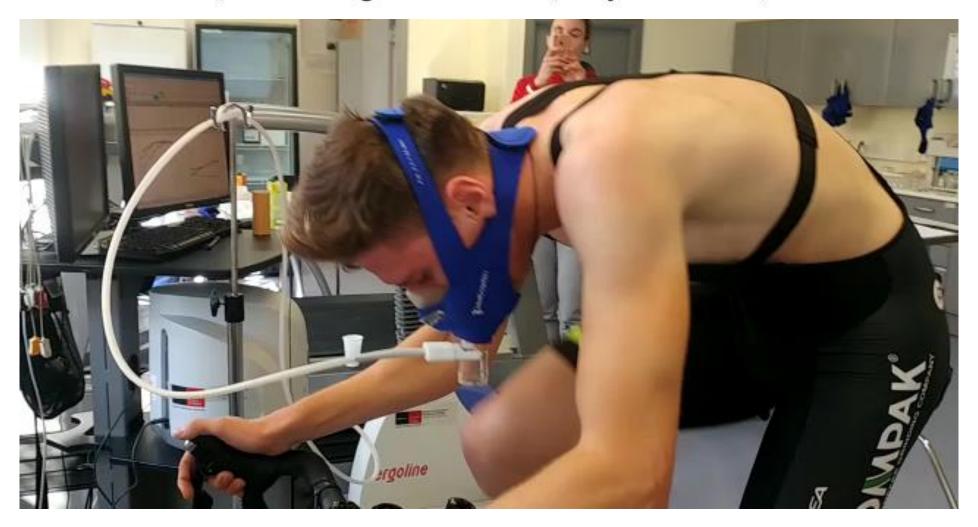
Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance

Morten Kristoffersen^{1,2*}, Øyvind Sandbakk², Bent R. Rønnestad³ and Hilde Gundersen¹

¹ Department of Sport, Food and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Norway, ² Centre for Elite Sports Research, Department of Neuroscience and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway, ³ Section for Sport Science, Inland Norway University of Applied Sciences, Lillehammer, Norway

STATE OF THE ART...

	Week	1-3	Week 4-6			
	1. Bout	2. Bout	1. Bout	2. Bout		
Half squat	3x8RM	3x5RM	3x6RM	3x4RM		
One-legged leg press	3x8RM	3x5RM	3x6RM	3x4RM		
One-legged hip flexion	3x8RM	3x5RM	3x6RM	3x4RM		
Ankle plantar flexion	3x8RM	3x5RM	3x6RM	3x4RM		

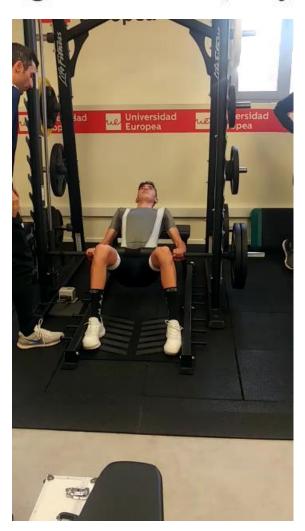

15 min Warm Up							
3x4 seated sprints	max. effort	R: 2' between	R: 5' between				
	max. enort	sprints	sets				
	Week 1-2	Week 3-4	Week 5-6				
Session 1	4 seg	7 seg	8 seg				
Session 2	6 seg	5 seg	6 seg				

Comparison of Short-Sprint and Heavy Strength Training on Cycling Performance

Morten Kristoffersen^{1,2*}, Øyvind Sandbakk², Bent R. Rønnestad³ and Hilde Gundersen¹

- Group sprints ^ average and peak PO in all sprint tests.
- Resistance training group ^ increase in squat RFD values.
- No differences were found in VO2_{max}, PO at a threshold of [La-] 4 mmol-L⁻¹ and Gross Efficiency.

On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial


On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial

On- Versus Off-Bike Power Training in Professional Cyclists: A Randomized Controlled Trial

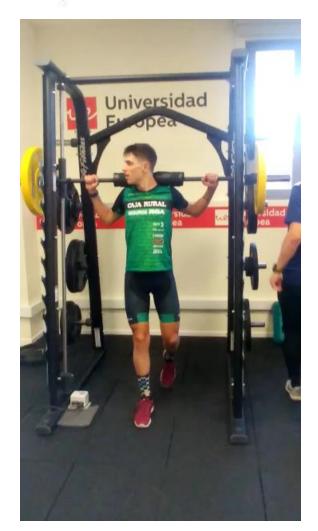


Table 1 Characteristics of the 2 Muscle Power Training Interventions

Intervention	Variable	Description
CPT	Duration	7 wk
	Frequency	2 sessions/wk
	Exercises	Cycling sprints
	Training (sets × repetitions)	3×4
	Intensity	"All-out" with the highest possible gear
	Rest, s	120 between sprints/300 between sets
RPT	Duration	7 wk
	Frequency	2 sessions/wk
	Exercises	Squat, hip thrust, and lunge
	Training (sets×repetitions)	3×maximum number of repetitions at >90% of OPL
	Intensity	OPL
	Rest, s	120

Abbreviations: 1RM, 1-repetition maximum; CPT, cycling power training; OPL, optimum power load; RPT, resistance power training.

Table 2 Results of Body Composition Outcomes

Outcome	Group	Baseline	Postintervention	Within group P value	Time P value	Group × time P value	Effect size η_p^2
Body mass, kg	CPT	66.2 (8.0)	65.6 (6.8)	.237	.023	.547	.023
	RPT	62.1 (8.2)	61.0 (7.6)	.059			
Fat mass, kg	CPT	10.7 (1.0)	10.7 (1.3)	.889	.069	.076	.184
	RPT	9.5 (1.8)	9.0 (1.6)	.017			
Muscle mass, kg	CPT	51.7 (6.6)	52.1 (5.6)	.575	.911	.487	.031
	RPT	49.1 (5.8)	48.8 (6.2)	.721			
BMD, g·cm ⁻²	CPT	1.11 (0.09)	1.10 (0.09)	.207	.421	.329	.060
335073	PPT	1.07 (0.08)	1.15 (0.22)	.203			
BMC, g CPT	CPT	2.39 (0.36)	2.41 (0.35)	.068	.007	.627	.015
80	RPT	2.18 (0.32)	2.22 (0.33)	.047			

Abbreviations: BMC, bone mineral content; BMD, bone mineral density; CPT, cycling power training; RPT, resistance power training. Note: Data are presented as mean (SD). Significant (P < .05) values are given in bold.

Table 3 Results of Muscle Strength-Related Outcomes

Outcome	Group	Baseline	Postintervention	Within group <i>P</i> value	Time P value	Group × time P value	Effect size $\eta_{\rm p}^2$
Squat 1RM, kg	CPT	86 (10)	86 (18)	.889	.085	.106	.155
	RPT	81 (15)	92 (13)	.028			
Squat MPP, watts	CPT	500 (88)	546 (168)	.401	.058	.977	.000
	RPT	499 (91)	544 (106)	.028			
Hip thrust 1RM, kg	CPT	103 (13)	115 (34)	.674	.065	.582	.019
	RPT	93 (24)	114 (32)	.202			
Hip thrust MPP, watts	CPT	475 (113)	538 (184)	.161	.020	.438	.038
	RPT	411 (81)	531 (149)	.083			
Lunge 1RM, kg	CPT	66 (11)	74 (12)	.249	.005	.438	.038
	RPT	64 (16)	76 (11)	.025			
Lunge MPP, watts	CPT	363 (104)	444 (128)	.050	.011	.638	.014
	RPT	367 (114)	425 (83)	.059			

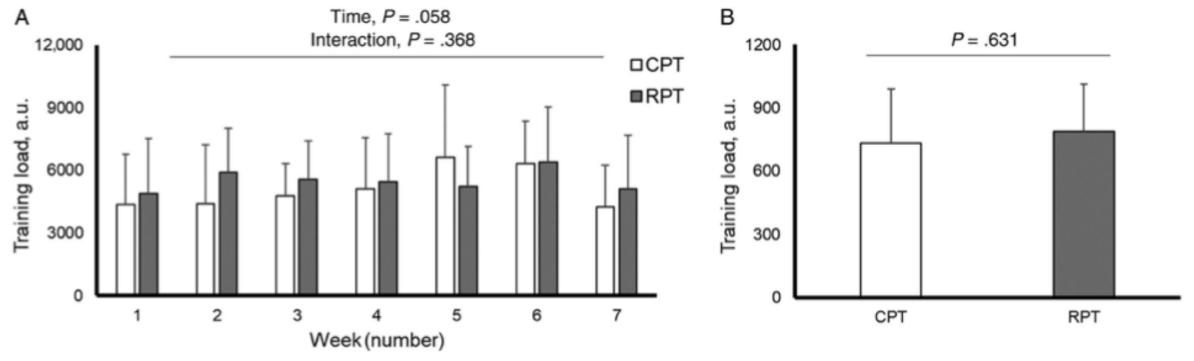

Abbreviations: 1RM, 1-repetition maximum; CPT, cycling power training; MPP, maximum mean power output; RPT, resistance power training. Note: Data are presented as mean (SD). Significant P values are given in bold.

Table 4 Results of Endurance Performance-Related Outcomes

Outcome	Group	Baseline	Postintervention	Within group P value	Time P value	Group × time P value	Effect size $\eta_{\rm p}^2$
VO₂peak, mL·kg ⁻¹ ·min ⁻¹	CPT	76.5 (3.3)	78.5 (4.3)	.176	.521	.513	.027
	RPT	79.2 (4.9)	79.2 (7.5)	.959			
PPO, watts	CPT	423 (49)	433 (38)	.310	.299	.734	.007
	RPT	421 (43)	426 (39)	114			
PPO, watts·kg ⁻¹	CPT	6.4 (0.4)	6.6 (0.4)	.091	.032	.986	.000
	RPT	6.8 (0.4)	7.0 (0.6)	.074			
VT, watts	CPT	254 (16)	274 (9)	.018	.017	.789	.005
	RPT	250 (30)	267 (27)	.114			
VT, watts·kg ⁻¹	CPT	3.9 (0.4)	4.2 (0.4)	.018	.003	.911	.001
	RPT	4.1 (0.3)	4.4 (0.5)	.066			
RCP, watts	CPT	371 (39)	390 (28)	.174	.022	.907	.001
	RPT	350 (30)	366 (40)	.028			
RCP, watts·kg ⁻¹	CPT	5.6 (0.3)	6.0 (0.6)	.090	.004	.964	.000
	RPT	5.7 (0.5)	6.0 (0.6)	.013			
8-min TT (average percentage of VO ₂ peak)	CPT	90 (3)	91 (6)	.674	.527	.788	.005
	RPT	91 (5)	93 (7)	.799			
8-min TT (average of watts/VO ₂ (mL·min ⁻¹)	CPT	77 (2)	77 (3)	1.000	.427	.590	.019
	RPT	77 (3)	79 (5)	.508			

Abbreviations: CPT, cycling power training; PPO, peak power output; RCP, respiratory compensation threshold; RPT, resistance power training; TT, time trial; VO₂peak, peak oxygen uptake; VT, ventilatory threshold. Note: Data are presented as mean (SD). Significant P values are given in bold.

Figure 1 — Weekly (panel A) and daily average (panel B) training load (computed as session length [in minutes] multiplied by rating of perceived exertion [assessed on a 1–10 Borg scale]). CPT indicates cycling power training; RPT, resistance power training.

CONCLUSIONS

- Improvements in bone mineral content (VIP bone lesions), even more in the resistance training group.
- TT-8 min (4% better), in both groups
- Significant changes in body composition and physiological markers (pre-post), less significant between groups
- Both types of training can be included in the program, depending on the athlete's preferences.

The use of velocity-based resistance training in cyclists. New perspectives on strength training in cyclists

THANK YOU!!

David Barranco-Gil Universidad Europea de Madrid david.barranco@universidadeuropea.es

