Digital twins to enhance cycling performance

Terchniques, roadmaps and first results

Stijn Verwulgen

University of Antwerp Departement of Product Development Human Scale Stijn.verwulgen@uantwerpen.be

Overview

- First approach: smarttrainer
- Second approach: ultrafast 3D scanning

First approach:

Integrate aerodynamics in a smarttrainer

		Stop	Frontal Area (m²) Speed (/100 km/u) Power (/1000 Watt)
the second second second second		Clear graph	1 96875
		Inputs	0.9375 .90625
		Mass 74 kg	0.875
		Climb 0 %	0.8125
No. of Concession, Name of Concession, Name of Street, or other	-	Wind 0 m/s	0.75
		Power 0 W	.71875
		Ref. area 0,613 m ²	.65625
		Calibrate reference*	0.625
			0.5625
		Live Results	0.5
		Area 0,320 m ²	.46875
		Power 118,91 W	0.4375
		Speed 29,88 km/u	0.375 34375
		Distance 0,979 km	0.3125 28125
		Target pose Activate	0.25 21875 0.1875 15625
		Area 0,000 m ² Calibrate target pose*	0.125 0.09375 0.0625

Rationale

$$P = \frac{1}{2}\rho * C_d * A * (v_{air})^2 * v_{ground}$$

$$P(t) = \frac{1}{2}\rho * C_d(t) * A(t) * (v_{air}(t))^2 * v_{ground}(t)$$

$$P(t) = \frac{1}{2}\rho * C_d(t) * A(t) * (v_{air}(t))^2 * v_{ground}(t)$$

Real-time aero sensor-actuator

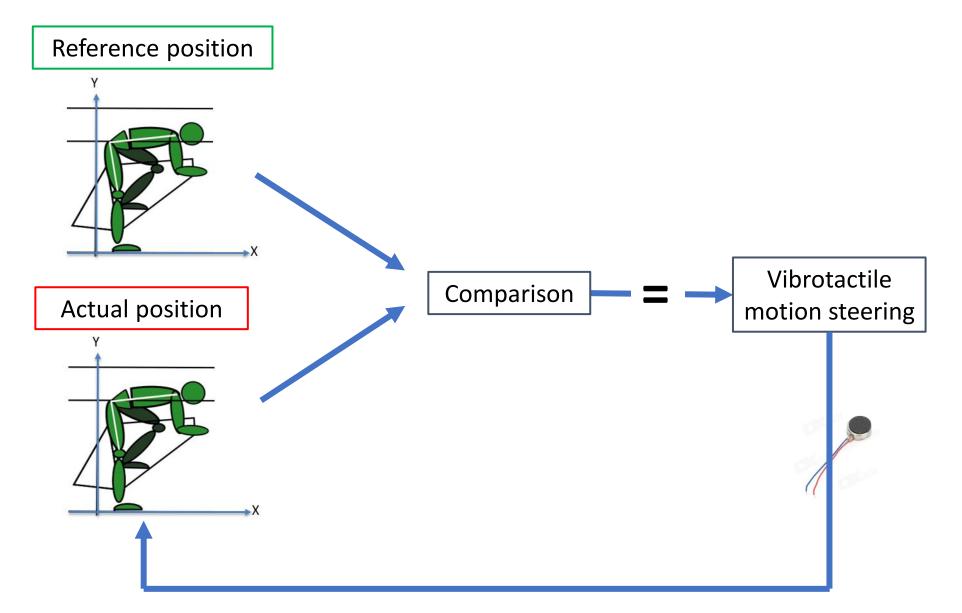
FAAST

SCANIA

S

Setup

PUNTAROSSO


Immersive indoor cycling with outdoor aerodynamics

Discussion

- Fair esports
- Early talent scouting
- Smart bikefit
- Train muscle memory
- Anticipating on future technologies
- Dangerous experiments in safe conditions

Anticipating on future technologies:

Vibrotactile motion steering

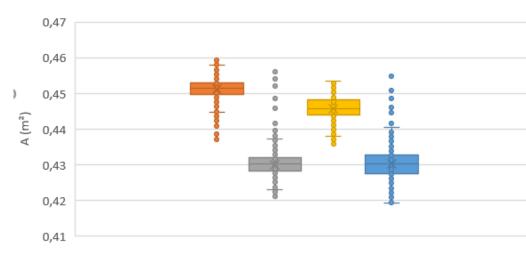
Effect in the lab

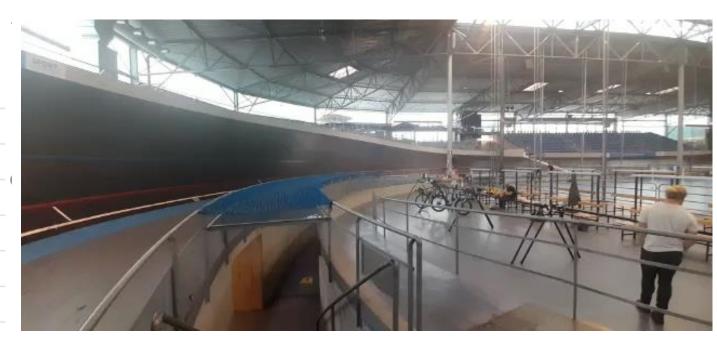
With and without motion steering at 50km/h

Intervention	Δ frontal area (m²)	Δ power (W)	
1.5% - No	-0.0068	-11.75	
3% - No	-0.0046	-8.05	

Theoretical effect of \pm 20s for 1h

Dangerous experiments in safe conditions


Results:


Gain of 3% confirmed in windtunnel and velodrome

Box Plot of FAAST test results

Can we further improve accuracy of aerodynamic simulation?

$$P = \frac{1}{2}\rho * C_d * A * (v_{air})^2 * v_{ground}$$
$$P = P (v_{ground}, v_{air}, pose)$$

Phase 1
$$P = \frac{1}{2}\rho * C_d * A(t) * (v_{air})^2 * v_{ground}$$

Phase 2 $P = \frac{1}{2}\rho * C_d(t) * A(t) * (v_{air})^2 * v_{ground}$

Second approach

Ultrafast 3D scanning

Step 1: scan

CFD analysis on articulating bodies

Step 1: 4D scan Step 2: Make scans watertight

CFD analysis on articulating bodies

Step 1: 4D scan Step 2: Make watertight

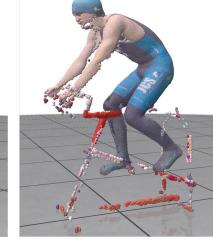
CFD analysis on articulating bodies

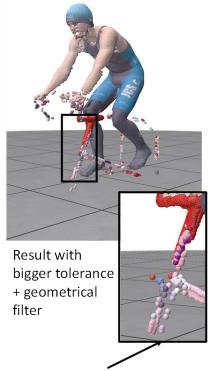
Step 1: 4D scanStep 2: Separate subject from bikeStep 3: Register scan to avatar

Separate subject from bike

Paint it red

Separate subject from bike


Paint it red



Filtered by Color in between dark red and white

Result with small tolerance

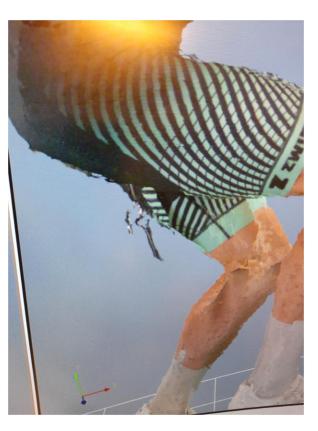
Result with bigger tolerance

Problem of the color of the bike: from dark red to red including lots of colors

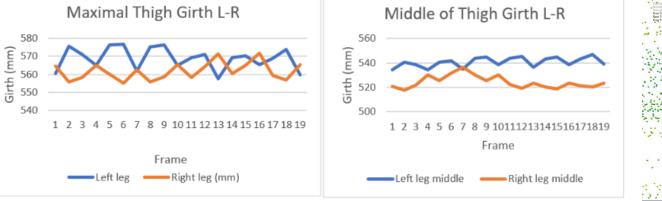
Separate subject from bike

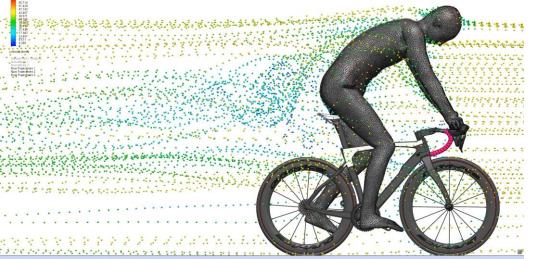
Paint it red

I want it



Discussion





Results

Conclusion

- Watertight 3D scan acquired in less than 10 microseconds
- Sequence of 3D scans acquired at 180 frames per second
- 50k points per scan
- In full collor
- Watertight
- Accurate dynamic mesh: correspondence between physical and digital points
- Dynamic anthropometric features
- Way to go for CFD on articulating cyclists

Acknowledgements

Jochen VleugelsAlexander Van GastelSenior prototyperJunior prototyperinteraction design &Junior prototypermechatronicsUniversity of AntwerpUniversity of AntwerpVan Gastel

Dries Matthys Elite Triatlete and Master Engineering

Tim Dieryckx Business developer Voxdale bv

Sam Smedts Product Developer sens2me Expert IOT

Raman Garimella PhD Industrial design, Sports Engineering Insead scholar Former pro cyclist

Lien Goos Intern Industrial Design KULeuven

Kobe Hermans Intern Applied engineering KULeuven

Emile Stas Intern Applied engineering KULeuven

Siemen Lippens Intern Industrial Design University of Antwerp

Patrick Vliegher CFD engineer Voxdale

Thomas Peeters PhD Industrial Design, Sports engineering Amateur cyclist

Nicolas Verbrugghe Intern business development Kdg

Contact stijn.verwulgen@uantwerpen.be