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1. Introduction 

The anaerobic threshold is an important 

marker commonly used in cycling to identify 

training zones and monitor training 

progress. However, monitoring of the 

anaerobic threshold is not performed on a 

regular basis due to the high costs, invasive 

blood sampling and time-intensive test 

protocols. Mathematical modelling might 

form a suitable alternative for regular 

monitoring of performance. Furthermore, 

modelling allows for identifying the effect of 

certain influential variables on the 

performance, resulting in performance 

prediction. They might enable more practical 

applications, especially in combination with 

wearable technology. In cycling, the heart 

rate, power and cadence are already 

continuously measured and monitored 

during training and competition, making 

them particularly suitable for integration in a 

modelling technique. This study attempts to 

estimate the anaerobic threshold with linear 

time-invariant and linear time-varying 

models based on the heart rate, power. 

2. Materials and Methods 

11 amateur, trained cyclists (6 male, 5 female) 

participated in this study. They performed an 

incremental cycling test on a Lode Excalibur 

ergometer in laboratory conditions to 

determine the maximal oxygen consumption 

(VO2max), ventilatory thresholds (VT) and 

second lactate threshold (LT). The workload 

increased with 40 watts every 3 minutes. The 

heart rate was measured with a 12-lead 

electrocardiogram (ECG). Lactate samples 

were taken at the end of each step and 

analyzed with the EKF Biosen Lactate 

Analyzer. Modelling and analysis was 

performed with the CAPTAIN toolbox in 

Matlab R2021b. The anaerobic threshold was 

estimated with a discrete-time transfer 

function (TF) approach. This method was 

selected because it is computationally 

efficient, robust and allows for capturing the 

system dynamics. The results were compared 

with the actual LT identified from the 

incremental step test. First, single-input 

single-output TF models with fixed 

parameters and characteristics were tested. 

Secondly, the parameters for the same model 

structures were estimated in a time-variant 

way to allow for changes in the parameters 

over time. The TF models have the following 

general form: 

𝑦(𝑘) =  
𝐵(𝑧−1)

𝐴(𝑧−1)
u(k − δ) + ξ(k)  (1) 

where y(k) is the output (HR), and u(k)  the 

input (power [W]) of the model; ξ(k) 

represents uncertainty in the relationship 

arising from a combination of measurement 

noise, the effects of other unmeasured inputs 

and modelling error; δ is the time delay 

between a change in the input and a 

corresponding response of the output, 

expressed in number of time intervals; 

𝐴(𝑧−1) and 𝐵(𝑧−1) are two series denoted 

as: 
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𝐴(𝑧−1) = 1 + 𝑎1𝑧−1 + 𝑎2𝑧−1 + ⋯ + 𝑎𝑛𝑎
𝑧−𝑛𝑎  (2) 

𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−1 + ⋯ + 𝑎𝑛𝑏
𝑧−𝑛𝑏 (3) 

where ai and bi are the model parameters to 

be estimated; 𝑧−1 is the backward shift 

operator, i.e.,  𝑧−1𝑦(𝑘) = 𝑦(𝑘 − 1) , with y 

and k defined as in Eq. 1; 𝑛𝑎 and 𝑛𝑏 are the 

orders of the respective A and B polynomials. 

Consequently, the model structure is defined 

by the triad [𝑛𝑎 𝑛𝑏 𝛿]. 

Time-invariant parameter (TIP) models 

The heart rate was modelled with a first-

order TIP model with the power as the input 

for the first step only for each individual, 

shown in Figure 1. This model was 

subsequently applied to the rest of the data 

with the same model parameters and 

characteristics, shown in Figure 2. Since the 

actual heart rate was also captured, the error 

could be calculated. The LT was estimated at 

the point at which the cumulative absolute 

error increased exponentially. 

Time-variant parameter (TVP) models 

A first-order model was created for each 

individual, with varying parameters. A first-

order model has two parameters able to vary 

over time: a1 and b0. The LT was estimated 

at the point at which the dynamics of the 

parameters changes, shown in Figure 3. 

3. Results 

Calculation of the LT with time-invariant 

parameter (TIP) models was performed with 

an average error of 11%. For 5 out of 11 

participants, the estimated LT was 

approximated with an error smaller than 10 

watts. The time-variant parameter (TVP) 

models performed with an average error of 

4%. For 9 out of 11 participants, the LT was 

estimated with an error smaller than 10 

watts. The better performance of the time-

variant parameters was attributed to their 

adaptability and their ability to capture a 

highly varying signal such as the heart rate 

better.  

4. Conclusions 

Modelling techniques based on the heart 

rate and power output approximate the LT 

with a decent accuracy, with time-varying 

parameter models performing better than 

time-invariant models. Our results are 

interesting to the Science & Cycling 

community since they propose an alternative 

to the current gold-standard of testing that 

might enable at regular monitoring of the 

anaerobic threshold in cycling. Given the 

widespread popularity of heart rate, power 

and cadence sensors in both elite and 

recreational cyclists, this modelling approach 

could relatively easy and low-cost be 

integrated in the training routine of cyclists. 

The modelling approach based on wearable-

captured heart rate, power and cadence data 

might even be applied in the field. However, 

the accuracy of the technique is lower when 

compared to the gold-standard. 

Incorporating the cadence into the models 

might improve the accuracy. Future work 

also needs to focus on verifying the technique 

in a bigger, more varied population and 

finding a way to adapt it to field-captured 

data.  
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Figure 1. Visualization of the time-invariant parameter modelling technique. A model is constructed 

for the data of the first step only. The heart rate is modelled in function of the power with dynamic 

transfer function models.  
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Figure 2. (a) Actual and simulated heart rate data with the TIP estimation method. The black vertical 

line signifies the start of the step with the LT (b) Power steps throughout the testing protocol. Starting 

value was 80 W with increments of 40 W 
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(b) 

Figure 3. (a) b0 parameter plotted in function of a1 parameter with different colors for the different 

steps. The red dot signifies the start of the step with the LT (b) First derivative/slope of (a) with different 

colors for the different steps. The red dot signifies the start of the step with the LT.  

 

 

 

 


