State of the art in aerodynamic measurement challenges and opportunities

776944454321.015465

Marc Graveline marc@graveline.ca

Goals of presentation

- Understand how basic technologies work
- Understand and overcoming limitations
- Road testing as part of aero strategy
- Help in our selection of technology
- Opportunities

How can we test

- Wind tunnel
- Indoor Velodrome
- Outdoor Velodrome
- Road testing
- Race
- Which is best ? None
- Make sure your race results match your tests
- Test where you plan to race !!!

A few abbreviations

- Mass m • Gravity 9.81m/s^2 g Vg
- Ground Speed
- Air Speed = Ground Speed+Wind.
- rho • Air Density

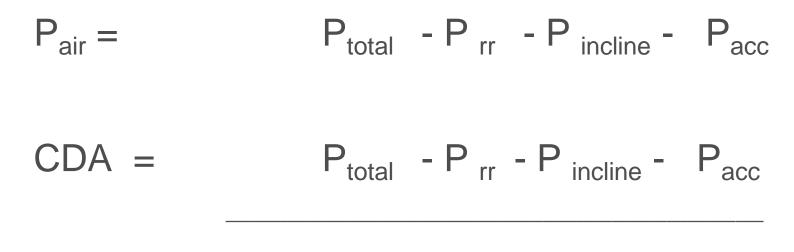
 V_a

4 Buckets of power

$$P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acc}$$

P_{total}

P_{rr}


P incline

P_{air}

Pacc

measured by powermeter m * g * CRR * V_g m * g * deltaAlt 0.5 * rho * CDA * V_a ^2 * V_g 0.5 * m * (Vf^2 – Vi^2)

Calculating CDA

360w, 50km/h, no incline, steady

 $P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acceleration}$

rr 75 * 9.81 * 0.0035 * 14 = 36wincline = 0w air 0.5 * 1.18 * .200 * 2744 = 324wacc = 0w

Total 360w

Introduce a 1% incline

- $P_{total} = P_{rrr} + P_{incline} + P_{air} + P_{acc}$
- rr75 * 9.81 * 0.0035 * 14= 36winc75 * 9.81 * .14= 103w
- air 0.5 * 1.18 * .200 * 2744 = 324wacc = 0w
 - Total 463w

Back to 360w

- $P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acc}$
- rr 75 * 9.81 * 0.0035 * 14 = 36w
- inc 75*9.81*.14 = 103w
- air 0.5 * 1.18 * .200 * 2744 = 324w
- acc $0.5 * 75 * (13.9^2 14^2) = -103w$
 - Total 360w

Calculating CDA

- $P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acc}$
- rr 75 * 9.81 * 0.0035 * 14 = 36winc 75 * 9.81 * .14 = 103w
- air 0.5 * 1.18 * .200 * 2744 = 324wacc = 0w

463w

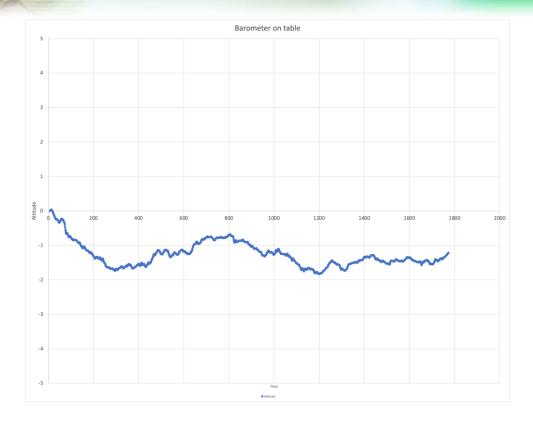
CDA = (463-36 - 103 - 0) / (0.5 * 1.18*2744)= 0.200

How do we measure

- Power
 - Need to remove losses due to drive train inefficiency
- Speed
 - Speed sensor
 - GPS
- AirSpeed
 - Pitot, Weather Flow
- Air Density
 - Temp, humid, baro pressure
- Incline
 - Baro
 - IMU gyro, accelerometer, mag

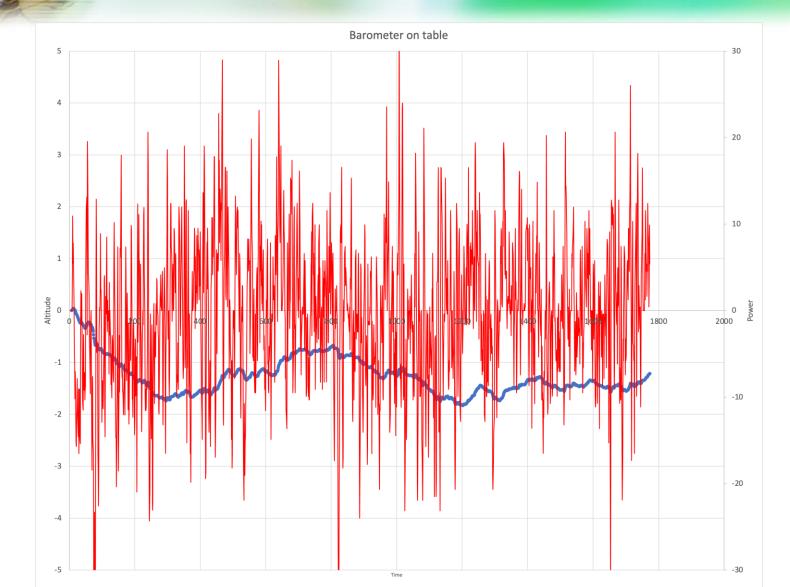
Sources of error

- Power
 - Calibration/autoCalibration
- Speed
 - Speed sensor resolution +/- 1 count
 - GPS 10m
- AirSpeed
 - Yaw
 - Rider Position
- Air Density
 - Temp, humid, baro pressure
- Incline
 - Baro
 - IMU gyro, accelerometer,mag


Other Challenges

- Complexity of overall system
- Placement of sensor on bike,
 - Clean air
 - Minimal vibration
 - Complex front ends

-


• Position changes of the rider

Explore error : Barometer

• 2m drift over 30min

Converting to watts

Introduce error from barometer

$$P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acceleration}$$

CRR 75 * 9.81 * 0.0035 * 14=36wALT 75 * 9.81 * (.14+.05)=140wAIR 0.5 * 1.18 * .200 * 2744=324wACC=0w

CDA = (463 - 36 - 140 - 0) / (0.5 * 1.18 * 2744)

CDA = 0.177

Explore error : wind speed

 $P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acceleration}$ CRR 75 * 9.81 * 0.0035 * 14 = 36w ALT 75 * 9.81 * (.14) = 103w AIR 0.5 * 1.18 * .200 * 2744 = 324w ACC = 0w

1%CDA = (463-36-103-0) / (0.5 * 1.18 * 2799) = 0.1962%CDA = (463-36-103-0) / (0.5 * 1.18 * 2854) = 0.19210%CDA = (463-36-103-0) / (0.5 * 1.18 * 3320) = 0.165

Real time-Instantaneous-Window

• Energy = power * time, 1w * 1s = 1 joule

$$P_{total} = P_{rr} + P_{incline} + P_{air} + P_{acc}$$
$$E_{total} = E_{rr} + E_{incline} + E_{air} + E_{acc}$$

4 buckets of energy

$$E_{total} = E_{rr} + E_{incline} + E_{air} + E_{acc}$$

 $\begin{array}{lll} & E_{total} & \sum \text{ samples measured by powermeter} \\ & E_{rr} & \sum m * g * CRR * V_g \\ & E_{inc} & \sum m * g * dAlt \\ & E_{air} & \sum 0.5 * rho * CDA * V_a^2 * V_g \\ & E_{ac} = & \sum 0.5 * m * (Vf^2 - Vi^2) \end{array}$

airspeed = groundspeed + wind

4 buckets of energy

$$E_{total} = E_{rr} + E_{incline} + E_{air} + E_{acc}$$

 $E_{total} \quad \sum \text{ samples measured by powermeter} \\ E_{rr} \quad \sum m * g * CRR * V_g \\ E_{inc} \quad \sum m * g * dAlt \\ E_{air} \quad \sum 0.5 * rho * CDA * V_a^2 * V_g \\ E_{ac} = \sum 0.5 * m * (V_f^2 - V_i^2)$

airspeed = groundspeed + wind

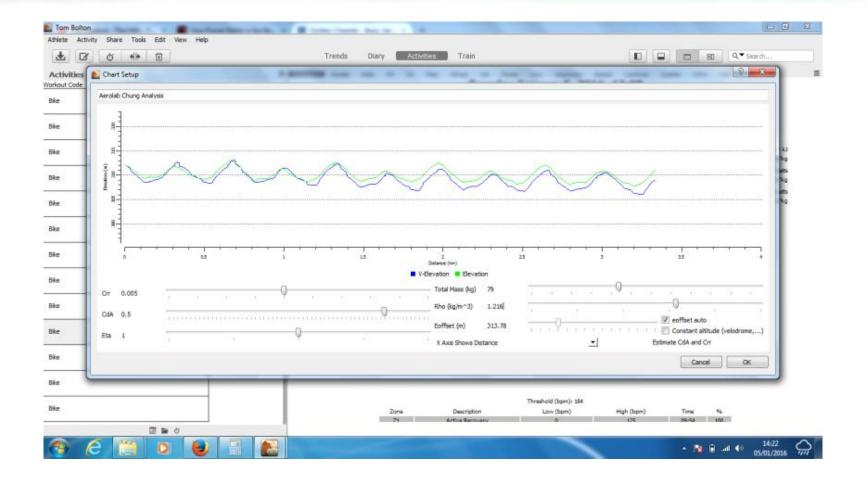
4 buckets of energy

If dAlt = 0 and Vf = Vi

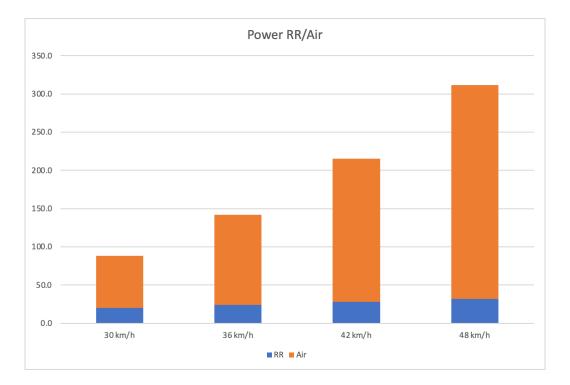
 $E_{total} = E_{rr} + E_{air}$

 $\begin{array}{lll} \mathsf{E}_{total} & \boldsymbol{\Sigma} \text{ samples measured by powermeter} \\ \mathsf{E}_{rr} & \boldsymbol{\Sigma} & \mathsf{m} * \mathsf{g} * \mathsf{CRR} * \mathsf{Vg} \\ \mathsf{E}_{air} & \boldsymbol{\Sigma} 0.5 * \mathsf{rho} * \mathsf{CDA} * \mathsf{Va^2} * \mathsf{Vg} \end{array}$

airspeed =

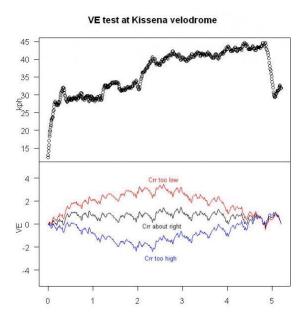

Role of protocol

How do we get there Indoor Velodrome Ground Speed = AirSpeed No delta Alt Close Loop Out and Back Wind out $\sim = -1 *$ Wind back


Why is protocol not enough ?

- What changes
 - Yaw
 - Position
 - Rolling resistance
- Error analysis

What is the Chung method



Fun fact – CRR / CDA relationship

On topic of CRR : varies with temperature and vibration

Shen method

Quantifying precision

Opportunities beyond CDA

- Measuring sources of inefficiency : position and biomechanics
- CRR, vibration, tire pressure
- Race results vs test embedded tech
- TTT : optimize pacing and execution

To do : vendors

- more sensors, the more we can detect good and bad data
- Correct or at least quantify error
- Sophisticated fusion protocols
- Adjust to protocols
- Easy to use software
- More cost effective
- Cooperation/interoperability/open source

To do : users

- Select your technology
 - Ease of use
 - Precision
 - Non intrusiveness
 - Supports Protocol you can live with
 - Actionable Information
- Understand the limitations of the technology

Conclusions

- Make road testing part of your strategy
- Understand the role of protocol
- Pick the technology that meets your requirements today and will grow
- Slowly push the boundaries to new possibilities

Questions

Marc Graveline marc@graveline.ca

46513465132170254654584631002 65431354-854.468454321.015465

Credits

- <u>https://poweredtemplate.com/02093/0/ind</u>
 <u>ex.html</u>
- <u>https://bikeblather.blogspot.com/2013/08/</u> <u>aero-field-testing-using-chung-</u> <u>method.html</u>
- Tom Bolton
 - https://cycle4curry.wordpress.com/tag/ch ung-method/
- https://nyvelocity.com/articles/coachingfit ness/the-shen-method