

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

SFISM Swiss Federal Institute of Sport Magglingen

Does speed influence time to exhaustion at maximal aerobic power in treadmill cycling?

Nina Zenger, Federal Office of Sport Copenhagen, 30.06.2022

Introduction Training

Assos

Variation in speed with and without motorpacing while producing the **same power output**

Assos

Introduction Testing

Predefined speed via flywheel mass and treadmill speed

- Does the predefined speed in the lab influence performance?
 - → Effect of Speed on Time to Exhaustion (TTE) at Maximal Aerobic Power (MAP) in Treadmill Cycling

Step 1: Adjust m_{eq} during coasting until equilibrium is achieved

$$\vec{F}_{eq} = \vec{F}_{grad} + \vec{F}_{Rr}$$

Step 2: Add m₂ to generate desired power output (Watt)

$$P\eta = F_2 v$$

 η : Drive train efficiency

Maier, T., Schmid, L., Müller, B., Steiner, T., & Wehrlin, J. P. (2017). Accuracy of Cycling Power Meters against a Mathematical Model of Treadmill Cycling. *International journal of sports medicine*, *38*(6), 456–461. https://doi.org/10.1055/s-0043-102945

How to achieve the same power output with two different treadmill speeds

Low Speed (4 m/s)

High Speed (11 m/s)

MAP $\eta = v_4 m_4 g$

MAP $\eta = v_{11} m_{11} g$

- 20 subjects
- 2 conditions: low (4 m/s) and high (11 m/s) speed
- 2 TTE tests at individual MAP
- Randomized order
- Within 2 weeks, at least 24h rest between trials
- Own bikes and self-selected cadence

Subjects n = 20 (f = 5, m = 15)

Variable	mean ± SD	min - max
Age [y]	22.4 ± 7.3	15.1 - 37.9
Height [cm]	173.7 ± 7.4	159.5 - 188.9
Body Weight [kg]	64.8 ± 9.0	50.3 - 86.9
MAP [W]	349 ± 56	250 - 450
VO ₂ max ¹ [mL min ⁻¹ kg ⁻¹]	64.5 ± 5.4	57.1 - 74.6

Abbrevations: MAP, maximal aerobic power; VO_2max , maximal oxygen consumption.

¹ Sitko, S., Cirer-Sastre, R., Corbi, F., & López-Laval, I. (2022). Five-Minute Power-Based Test to Predict Maximal Oxygen Consumption in Road Cycling. International journal of sports physiology and performance, 17(1), 9–15. https://doi.org/10.1123/ijspp.2020-0923

Variable	mean $\Delta \pm SD$	р
TTE [%]	-0.4 ± 11.9	0.88
HRmax [bpm]	-1.2 ± 5.1	0.31
Borg	0.2 ± 0.5	0.19
Cadence [rpm]	-13.5 ± 9.5	<0.001
Abbrevations: $\Lambda =$ slow trial – fast	trial. TTE time to exhaustion. HRmax ma	aximal heart rate

Note: Individual measurements shown as transparent points, mean values shown as black points

- On average no difference
- Large individual differences

Note: Individual measurements shown as transparent points, mean values shown as black points

• Significant difference in selfselected cadence

Note: Individual measurements shown as transparent points, mean values shown as black points

- Effect of Speed on ...
 - TTE
 - On average no effect
 - Large individual differences why?
 - Cadence
 - On average significant difference in self-selected cadence
 - Lower cadence for low speed condition
 - \rightarrow more force per pedalstroke at low speed trial
 - \rightarrow Choose flywheel mass / speed with consideration

Thank you for your attention!

Federal Office of Sport FOSPO Swiss Federal Institute of Sport Magglingen SFISM

Federal Office of Sport FOSPO Swiss Federal Institute of Sport Magglingen SFISM