

Bike fit: Applying the research to the clinic

Dr Wendy Holliday

BSc Physiotherapy PhD Exercise Science

Fitting the rider on the bike

or

fitting the bike to the rider and their goals?

An online survey indicated that 90% of cyclists agreed that comfort is a concern when riding

46% of enthusiastic riders agree that comfort is reached at the expense of performance

Priego Quesada et al 201

Bicycle configuration

(Hamley & Thomas, 1967)	Percentage of inseam length	Time to exhaustion during constant load cycling	100	109% inseam leg minimised time to exhaustion	109% inseam length
1976)	100%, 103%, 106%, 109%, and 112% of inseam length	vo2, vco2, ve, HR performanc	5 Evomen	Efficiency	Saddle set at 103-104% inseam length resulted in maximum power output 100% Trochanteric saddle
	Trochanteric height				height most economical
(Holmes et al., 1994)	Knee flexion angle	Lower extremity overuse injuries	Review	To minimise knee joint load, aim for 25-35° KFA	25-35° KFA
(W Peveler et al., 2005)	109% Inseam length (Hamley and Thomas) LeMond method Heel-Toe method	To determine which method best fit into the recommended 25-35° KFA	14 male cyclists 5 female cyclists	No significant difference between Hamley and Le Mond method. Significant difference between Hamley and heel-toe method. Hamley method fell into the 25-35° KFA 55% of the time.	25-35° KFA
(W Peveler et al., 2007) Opti		Anaerobic Power cle activity	9 male trained cyclists 3 non-trained male cyclists 15 female non-trained cyclists	 a) Using 109% inseam to set saddle height, fell outside 25-35 KFA 6.% of the tinge outside 25-35 KFA 6.% of the tinge a loss in power, especially at lower saddle heights. c) When within recommended KFA there was no difference in power. 	2 <u>5-35°</u> KFA
(W Peveler, 2008)	25° KFA 35° KFA 109% Inseam length (Hamley and Thomas)	VO ²	5 male cyclists 2 male non-cyclists 9 female non-cyclists	A 25° KFA produced a significantly lower VO ² compared to 35° KFA and 109% inseam.	For increased economy, a KFA closer to 25°
(W Peveler & Green,	25° KFA	VO ²	11 well trained males	Economy was better at 25° KFA compared to 35°	For better economy and power
2011)	35° KFA 109% Inseam length (Hamley and Thomas)			and 109% inseam length. Power production was better at 25° compared to 109% inseam length.	production recommends a KFA closer to 25°
(R Bini, Hume, & Croft, 2011)	Review of literature	 a) Comparisor of dw c er langth measurements and knee angle methods. b) Effects of saddle height on performance. c) Effects of saddle height on knee injury risk 		 The knee flexion angle method recommended b) Saddle height set to the Holmes method has better evidence for improved performance. c) A knee flexed at 25-30° has been related to lowering the knee joint load and thus injuries. 	Holmes method, 25-35° KFA

Saddle height

Knee flexion angle 25-35° static

Knee flexion angle 33-43° dynamic [low intensity]

Knee flexion angle 30-40° dynamic [high intensity]

Competitive rider: stage race with ITT

- What will you consider wrt his fit?
- How high will you set his saddle?
- How aero will you get him?

HAMSTRING FLEXIBILITY

Cyclists tended to select saddle height according to their hamstring flexibility, and cyclists with limited hamstring flexibility self selected lower saddle

heights.

Ferrera Roca et al 2012 Holmes et al 1993

Holliday & Swart 2021

Holliday & Swart 2021

Saddle height was predicted to increase by 6mm for every extra cm achieved in the mSchober test

Saddle setback

Saddle setback

Recommendations	Based upon	Study
Formula related to upper leg length	Personal perspective	(de Vey Mestdagh, 1998)
Plumbline and knee over pedal spindle in the 3 o'clock position (static)	Personal experience and recommendations	(Burke, 2003; Burt, 2014; Silberman et al., 2005)
Setback <5% of saddle height favours power production in the quads Setback >10% saddle height favours production from gluteals and posterior muscles	10 male trained cyclists	McDonald et al 2021

Clinical

- Cyclist complains of tight hips or fatigue in the quads
- Move saddle back a small amount

Handlebar reach

Handlebar reach

Recommendations	Based upon	Study
Formula determined by arm length and torso length	Personal perspective	(de Vey Mestdagh, 1998)
Plumbline from cyclist's nose dropped to centre of stem, hands in drops	Personal experience and recommendations	(Burke, 2003)
Comfort in the drops, elbows flexed 60° to 70°	Personal experience and recommendations	(Silberman et al., 2005)
Related to forearm length	Personal experience and recommendations	(Pruitt & Matheny, 2006)
Individual, comfort	Personal experience and recommendations	(Burt, 2014)

Clinical

- Social rider or older population
- Beginner?

Handlebar drop

Handlebar drop

Recommendations	Based upon	Study	
Formula determined by arm length and torso	Personal perspective	(de Vey Mestdagh,	
length		1998)	
2.5 -5 cm below saddle for small cyclists	Personal experience and	(Durles, 2002)	
10 cm below saddle for tall cyclists	recommendations	(Burke, 2003)	
Hands on the brake hoods, arms slightly flexed	Personal experience and	(Silberman et al.,	
Hands of the brake hoods, arms signify hered	recommendations	2005)	
Racer/competitive recreational torso angle 30-45°	Personal experience and	(Pruitt & Matheny,	
Casual cyclist 50-60° torso angle	recommendations	2006)	
Individual, comfort	Personal experience and recommendations	(Burt, 2014)	

Clinical

Neck or lower back pain and/or stiffness?

Holliday & Swart 2021

Research has also demonstrated that increased hamstring flexibility and a lower handlebar position was associated with improved performance.

WHY IS HAMSTRING FLEXIBILITY SO IMPORTANT?

FULL BODY MOBILITY

Aerodynamics

Half Ironman

• Does your rider want to

finish comfortably? beat their training partner or PB?

- How aero will you put them?
- What will you take into consideration with these riders?

Injuries: Broken collar bone

with permission

Summary

- We need the scientific optimal ranges to guide us in terms of performance and injury prevention
- We should understand that we do not need to fit everyone into those ranges, and be able to explain why we aren't fitting them there
- Work towards getting them into those ranges with PT, exercises, stretches, postural education etc

An optimal fit is the one when the client is happy!

Thank you

- Bini, R, Hume, P., & Croft, J. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. *Sports Medicine (Auckland, N.Z.), 41*(6), 463–476
- Burke, E. (2003). *High-Tech Cycling* (Second). Human Kinetics.
- Burt, P. (2014). *Bike Fit: Optimise Your Bike Position for High Performance and Injury Avoidance*. London: Bloomsbury Publishing Plc.
- de Vey Mestdagh, K. (1998). Personal perspective: in search of an optimum cycling posture. *Applied Ergonomics*, *29*(5), 325–334.
- Ferrer-Roca, V., Roig, A., Galilea, P., & Garcia-Lopez, J. (2012). Influence of saddle height on lower limb kinematics in well-trained cyclists: static versus dynamic evaluation in bike fitting. *Journal of Strength and Conditioning Research*, *26*(11), 3025–3029.
- Hamley, E., & Thomas, V. (1967). Physiological and postural factors in the calibration of the bicycle ergometer. *Journal of Physiology*, *191*(2), 55–56.
- Holliday, W., & Swart, J. (2020). Performance variables associated with bicycle configuration and flexibility. *Journal of Science and Medicine in Sport*, 6.
- Holliday, W., & Swart, J. (2021). Anthropometrics, flexibility and training history as determinants for bicycle configuration. *Sports Medicine and Health Science*. https://doi.org/10.1016/j.smhs.2021.02.007
- Holliday, W., Theo, R., Fisher, J., & Swart, J. (2019). Cycling: Joint kinematics and muscle activity during differing intensities. *Sports Biomechanics*.

- Holmes, J., Priutt, A., & Whalen, N. (1994). Lower extremity overuse in bicycling. *Clinics in Sports Medicine*, *13*(1), 187–205.
- McDonald, Holliday & Swart (2022). Muscle recruitment patterns and saddle pressures indexes

with alterations in effective seat tube angle. Sports Medicine and Health Science.

- Peveler, W. (2008). Effects of saddle height on economy in cycling. *Journal of Strength and Conditioning Research*, *22*(4), 1355–1359.
- Peveler, W, & Green, J. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. *Journal of Strength and Conditioning Research*, *25*(3), 629–633.
- Priego Quesada, I., Pérez-soriano, P., Lucas-Cuevos, A., Salvador Palmer, R., & Cibrián Ortiz de Anda, R. (2017). Effect of bike-fit in the perception of comfort, fatigue and pain. *Journal of Sports Sciences*, *35*(14), 1459–1465.
- Pruitt, A., & Matheny, F. (2006). Andy Pruitt's complete medical guide for cyclists. Boulder, Colorado: Velo Press.
- Shennum, P., & DeVries, H. (1976). The effects of saddle height on oxygen consumption during bicycle ergometer work. *Medicine and Science in Sports.*, *8*(2), 119–121.
- Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport
- Medicine : Official Journal of the Canadian Academy of Sport Medicine, 15(4), 271–276.

