

Estimation of the drag force: a neuronal approach

Guillaume Leroux, Cédric Lemaitre, Cyrille André, Matthieu Voiry contact@apeira-technologies.fr

Science and Cycling 28-29 June 2022, Copenhagen, Denmark

© Apeira Technologies

www.apeira-technologies.fr

Context

- Aerodynamic drag = 80-90% of resistive forces
- Effective Frontal Area (ACd) : $F = 0.5 ACd \rho v^2$
- ACd should be reduced so must be quantified
- Existing Method :
 - Wind tunnel
 - Dynanometric measurement
 - Deceleration + Linear regression
 - Recently 3D digitilization + CFD

3D + CFD

- Cyclist Digitalization

- Set-up: 4 RGB-D Sensors

© Apeira Technologies

www.apeira-technologies.f

3D + CFD

- CFD solver : OpenFoam

➔ Drag force from simulation

- Excellent agreement with wind tunnel experimental data

© Apeira Technologies

www.apeira-technologies.fr

3D + CFD

- Low operating and equipment costs
- Measuring conditions closer to real world
- Many experiments are possible :
 - Simulating different wind conditions
 - Simulating different cyclist speeds
 - Assessing different equipments (helmet, wheel, ...)
 - Simulating team pursuit

- But CFD simulations are time consuming

Our proposal

- 3D + neural network

Neural network inputs

- Inputs = body parametric model + bike model + wind
 - Parametric body model produced by our 3D scanning device
 - Model is composed of:
 - Anatomical features (morphology)
 - Pose features (posture)
 - Bike dimensions
 - Wind speed and direction
 - → 70 (posture) + 10 (morphology) + 50 (bike) = 130 parameters
 - Too much parameters
 Over-fitting

Neural network inputs

- Dimension reduction

- Morphology : gender + 4 most significant parameters
- Bike description:
 - Saddle height
 - Crank angle
 - Handle bar height
 - Horizontal distance between bottom bracket and handle bar
- Posture description:
 - Hand pose (top, brake or down)
 - Average left and right shoulder torsion
 - Average left and right elbow flexion
 - Head and back flexion.
- Wind speed and direction

Dataset for learning

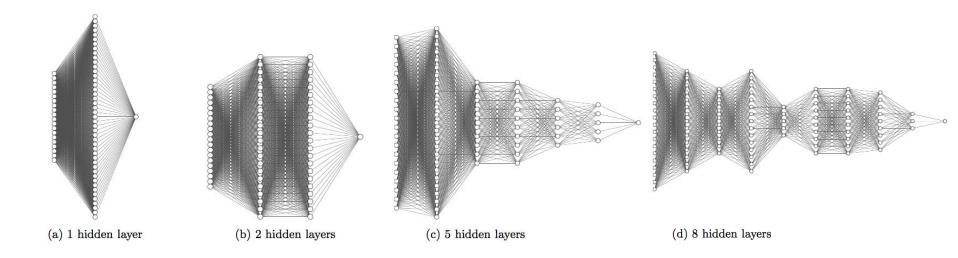
- Creating a cyclist model

- Morphology : randomly chosen
- Bike description:
 - Bike frame chosen according to the resulting body size
 - Saddle height, handle bar height and stem randomly altered around the nominal values
 - Crank angle randomly chosen
- Posture description:
 - Hand pose randomly chosen
 - Body model placed on the bike
 - Head flexion, spine flexion, elbow flexion and shoulder torsion randomly modified

Dataset for learning

- One sample

- A cyclist model
- Wind speed and direction randomly chosen
- Inputs : 16 parameters
- Output : drag force from OpenFoam simulation


- Dataset:

- 100 000 samples
- From 11 000 differents cyclist models
- Several wind directions and speeds ranging from 20 to 60 km/h.
- 1/3 of the data corresponds to a headwind

Neural network

- MLP architectures

- LeakyReLU activation functions + linear activation function

solving the problem of vanishing gradient

Results (1)

- Evaluation

- 25% of the data kept for validation (cross validation)
- Metric = RMSE :

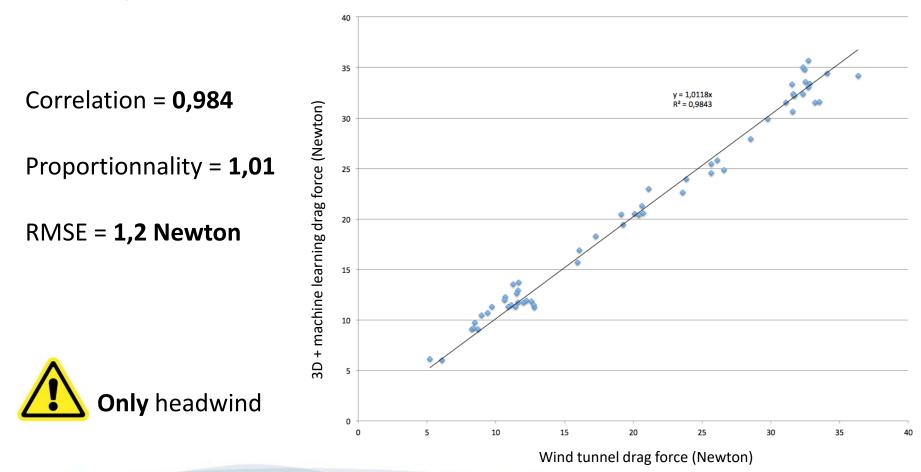
$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 $RMSE = \sqrt{MSE}$

- Best architecture

- Architecture with 25, 10, 10, 6 and 5 neurons in 5 hidden layers
- Difference between the "neural" (prediction) and CFD (output of the solver)
 drag forces = 0,95 Newton

- Encouraging results

BUT we need an indicator of the expected error on real data


(synthetic data does not include all the small variations seen in the real world)

© Apeira Technologies

Results (2)

- Comparison wind tunnel / 3D + neural network

www.apeira-technologies.fr

Conclusion

- Machine learning-based technique
 - ➔ Fast approximation of a time-consuming CFD simulation
- Results
 - Good approximation of CFD simulation (RMSE = 1,7 Newton)
 - Good approximation of wind tunnel measurements (RMSE = 1,2 Newton)
 - Promising method !

- Future works

- Validation for winds from all directions
- Taking into account the shape of the equipments (helmet, wheels, ...)
- Replacement of the CFD part of our drag force measurement system

Questions ?

© Apeira Technologies

www.apeira-technologies.f