

Are we closer to understanding the role of the ankle in pedalling?

Andy Brooke BSc, MA, MRes, PhD candidate

www.ibfi-certification.com

Commercial interests and affiliations

www.cyclologic.com

A trip down memory lane

- Toe up/toe down
 - "You can win 5 tours either way"

www.ibfi-certification.com

Terminology

- Plantarflexion/dorsiflexion
 - Flexed vs flexion
 - absolute position vs direction of movement

www.ibfi-certification.com

Pedal reaction forces

- Every force has an equal and opposite
 - In both magnitude and direction

www.ibfi-certification.com

Stabilising the ankle

- Similar to a calf raise on a block
- Without a stable ankle, the ankle collapses and shifts into dorsiflexion
 - Ankle absorbs force in this case
- Direction of movement more important than absolute position

Resisting pedal reaction forces

- Take-home: Soleus is king
 - Bent knee calf raises

- Are Joint Torque Models Limited by an Assumption of Monoarticularity? (Lewis et al, 2012)
 - Biarticular components contribute 31% of total force
 - 40 deg knee bend reduces that to 19%
 - ~100 deg knee bend common at start of power phase

Pedal reaction forces and cleat position

- Moving the cleats back reduces the length of the lever arm
 - Can reduce required muscle activation to overcome pedal reaction forces (Van Sickle & Hull, 2007; Gregor et al., 1987; Mademli, et al., 2009)

www.cyclologic.com

Pedal force effectiveness

- Sin θ
- θ = angle of force application
- $90^{\circ} = 100\%$
- 0 and 180 = 0%

www.cyclologic.com

Pedal reaction force effectiveness

- Sin θ
- Rearward position
 - 140 deg = 64.3%
- Forward position
 - 130 deg = 76.6%

www.ibfi-certification.com

Pedal reaction force effectiveness

- What if PF increases?
- Rearward position
 - 155 deg = 42.3%
- Forward position
 - 147 deg = 54.5%

www.ibfi-certification.com

www.ibfi-certification.com

260

Individual variability

Angle-Angle @ 10km

www.ibfi-certification.com

Individual variability

PF strength, relative strength, cleat position, technique (learnt and natural), calf as a pump RoM

www.cyclologic.com

Head of Biomechanics abrooke@cyclologic.com President andy@ibfi-certification.com

www.cyclologic.com