

Understanding frictions: Methodological guidelines for measuring transmission efficiency

©Gettylmages

R. Aubert^{1,2,4}, X. Roizard¹, F. Lallemand^{2,3}, F. Grappe⁴ ¹ Institut FEMTO-ST, Université de Bourgogne-Franche-Comté, Besançon (France) ² Société AFULudine, Dole (France) ³ Institut UTINAM, Université de Bourgogne-Franche-Comté, Besançon (France) ⁴ Laboratoire Athlète Matériel Environnement (LAME), Centre de Performance Equipe Cycliste Groupama-FDJ, Besançon (France) Contact: remiaubert@outlook.com

WINSLEEK

About us

proven to be the fastest pulley system in the world, providing energy savings starting from 2.4 watts over standard [...] systems

Quick reminder : frictions in chain drives

Problematic

4

WINSLEEK

Friction in chain links

Source : zerofrictioncycling.com

Friction characterisation

Kidd 2000, Spicer 2001

How were the frictions measured ? What are the limits of the methods that were used ?

Problematic

8

femto-st

Link with « real cycling » complexity **Full Transmission** Link Focused Single Speed **Isolated Parameter** Pendulum Rigs Rigs Rigs Rigs Rigs

Precision of measurement

WINSIFF

Full Transmission Rigs

=> Motorised rigs with the whole transmission tested

Friction Facts, CeramicSpeed, Denmark

- Chain drive efficiency
- Chain wear

- Close to real locomotory conditions
- Every parameter can be tested

- Subjected to variability because of the number of elements involved
- Needs accurate measuring devices

WINSI FF

Single Speed Rigs

=> Motorised rigs in single speed setup

Friction Facts, CeramicSpeed, Denmark

- Chain drive efficiency (track cycling)
- Chain wear

- Close to real locomotory conditions
- No derailleur involved

- Subjected to variability because of the number of elements involved
- Needs accurate measuring devices
- Both sides of chain under tension so different pattern

emto-st

WINSLEEK

=> Hanging chain articulating around a chainring

- Load in links
- Friction force during the articulation

Focused on an articulation Simple and accurate measurement

- Speed is low
 - Short tests only

WINSIFFK

Link Focused Rigs

=> One link articulating around another, one degree of movement

- Friction force in the link during articulation
- Wear in link

- Specific for one articulation
- Lowest scale on a link

- Far from the complexity of chain drives
- Specific for one articulation

WINSIFF

=> Device dedicated to COF measurement

SCIENCES & TECHNOLOGIES

Conclusion

Take home message

- Set your objective (parameter to measure => precision)
- Use the adequate(s) rig(s)
- If you compare, make sure the comparison is possible
- Be careful when extrapolating to real cycling
- Think global : other parameters may balance your results

©GettyImages

Thank you for your attention !