

Design guidelines for vibrotactile motion steering

Thomas Peeters (PhD fellow) Stijn Verwulgen (presenter)

Vibrotactile motion steering (VMS)

Vibrotactile motion steering (VMS)

= Providing instant feedback on human posture and movement using vibrations

- In situations where it is complicated to accurately and consistently assess the quality of maintaining a predefined position or movement
 - Busy environment
 - Complex task

Vibrotactile motion steering (VMS)

- = Providing instant feedback on the human posture and movement using vibrations
- In circumstances where alternative sensory input is difficult
 - Visual feedback
 - Auditory feedback

→ Real-time VMS is addition when visual and auditory communication are overstimulated

1) Systematic review VMS during physical effort

1) Systematic review VMS during physical effort

- Limited research on VMS in subjects performing physical effort
- Case study in cycling: aerodynamic position as reference position

1) Systematic review VMS during physical effort

Case study in cycling: aerodynamic position as reference position

- Mostly defined in wind tunnel experiments
- No control on maintaining of this position during training or races
- Relevant application of VMS
- Aerodynamic pose is definable, reproducible and assessable
- Straightforward to simulate different levels of physical effort

2) Perception VMS during physical effort

- Vibration motors as in smartphone activated at thighs and spine during 4 levels of physical effort
 - Stationary (0% of P_{max})
 - Cycling at 50% of P_{max}
 - Cycling at 70% of P_{max}
 - Cycling at 90% of P_{max}
- Participants indicated location on touchscreen

2) Perception VMS during physical effort

- Single vibrating signals perceived almost perfectly
- Accurate perception during high levels of physical effort for thighs and spine (p > 0.1)
- Vibrating signals at spine better noticed compared to thighs (p < 0.01) and preferred for aerodynamic corrections

Indoor training setup with frontal camera

- To calculate projected frontal area as indication of aerodynamics
- To define aerodynamic reference position
- Real-time VMS at C7 (neck) to provide feedback on cyclists' position
- Resistance smart trainer adjusted based on frontal area

camera

vibrating element

Pose	Frontal area (m ²)	Power (W)	
TT	0.315	119	
Drops	0.393	147	
Hoods	0.410	154	
Tops	0.416	155	

Reference pose = 0.315 m²

Margin of error	Margin above reference pose (m ²)	VMS from (m ²)
1.5%	0.004725	0.320
3%	0.00945	0.325

- Investigate efficiency VMS and define optimal margin
- 3 interventions in random order
 - No VMS
 - VMS from 1.5% above reference frontal area
 - VMS from 3% above reference frontal area

12' protocol

- Reference position
- Sit upright
- Standing

Reference position is more accurately achieved using VMS compared to no VMS (p < 0.001)

 No significant difference between 1.5% and 3% margin (p = 0.11), preference is person-specific

Profit VMS compared to no VMS at 50km/h

	Δ power (W)	Δ frontal area (m²)	Intervention
Theoretical effect	-11.75	-0.0068	1.5% - No
\int of ± 20s for 1h	-8.05	-0.0046	3% - No

4) Off-site applicability VMS during physical effort

- Frontal area as function of body measurements and joint angles via inertial measurement units (IMUs)
 - Position and orientation specific body parts

Analyse effect different cycling positions and joint angles

- Back bending
- Knee pronation
- Neck extension

4) Off-site applicability VMS during physical effort

- Linear regression analysis estimates frontal area based on body measurements and joint angles with average relative error of 1.70 ± 8.72%
- Not sufficient for aerodynamic VMS
 - Margin of error of 1.5% or 3%
 - Induce false positive and false negative VMS (up to 52.6%)
 - Wider margin irrelevant since average deviation from reference pose without VMS is around 3%

4) Off-site applicability VMS during physical effort

- Methods to directly estimate aerodynamics in outdoor situations
- Body Rocket system
 - Aerodynamic drag cyclist
 - Force sensors on contact points between cyclist and bike
 - Compatible with VMS

Conclusion

VMS effective in providing feedback on aerodynamic pose

- Accurate perception at high cycling intensities
- VMS based on real-time data is efficient
- Outdoor potential should be further investigated
- VMS can be optimized for alternative applications in other sports

Conclusion

Recommendations for optimal use of VMS during physical effort

- Ensure vibrating motors make direct contact with skin
 → Provide accurate perception of vibrations for user
- Use only one parameter simultaneously to provide VMS
 → Avoid confusing user
- Optimize accuracy of measurements
 → Avoid false positive or false negative VMS

Design guidelines for vibrotactile motion steering

Questions? Stijn.Verwulgen@uantwerpen.be

