Institute of Mechanical Systems ZHAW School of Engineering

EMG ACTIVITIES OF THE SHOULDER MUSCLES

DURING A SIMULATED DOWNHILL COMPARED

TO DYNAMIC SHOULDER EXERCISES

– A CROSS-SECTIONAL STUDY

Svenja Kaczorowski¹, Roman P. Kuster^{2,3} and Daniel Baumgartner²

¹Institute of Physiotherapy, School of Health Professions, Zurich University of Applied Sciences, Winterthur, Switzerland ²Institute of Mechanical Systems, School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland ³Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden

Background

Zurich University of Applied Sciences

Clavicular fractures and glenohumeral dislocations are the most

common injuries in mountain biking (Goldstein et al., 2016)

They can result in a reduction of the previous level of sportive activity (Weber et al., 2019, De Carli et al., 2019)

Study Aim

Zurich University

- Muscular activities of the upper extremity muscles
- Rehabilitation protocols for mountain bikers (Ma et al., 2017)
- Return to biking criteria

OVERVIEW

Institute of Mechanical Systems Winterthur

- 18-50 years
- Recreational mountainbikers
- No ongoing injuries

$28.2 \pm 6 \text{ years}$

MEASUREMENT PROTOCOL

Bear Hug

- 2, 3 & 4 kg
- 3 rep. à 6 sec.

Wall Push

• 3 rep. à 6 sec.

Maximum voluntary isometric contraction (MVIC) Tests (Boettcher et al., 2008)

BIKE SIMULATOR

Zurich University of Applied Sciences

7

Zurich University

MEASUREMENTS

Surface Electromyography

Wireless superficial EMG Myon 320 Electromyography System (myon AG, Kloten, Switzerland)

• Deltoid (anterior, middle, posterior)

- Pectoralis major
- → Sensor placement accordingly to SENIAM

Normalized EMG values (%MVIC)

- Peak activity = 95th percentile
- Average activity = median

ANTERIOR DELTOID

MIDDLE DELTOID

POSTERIOR DELTOID

PECTORALIS MAJOR

Discussion

KEY FINDINGS

Zurich University of Applied Sciences

LIMITATIONS

Simulator can only simulate small bumps, but not lateral sways (Duc et al., 2008, Hurst et al., 2017)

Small bumps could not be anticipated visually

Conclusion

TAKE HOME MESSAGE

The **Bear Hug** and **Wall Push** might be used as a part of the rehabilitation process to prepare the **anterior and middle deltoid and the pectoralis major** for the return to biking on easy downhill trails.

Conclusion

OUTLOOK

Joint loading and the influence of the rotator cuff have to be investigated further. Field-testing is necessary to include all factors that go along with biking and to validate the laboratory setting.

DYNAMIC SHOULDER EXERCISES

Bear Hug

- MVIC TESTS
- 90° scaption
- 90° shoulder internal rotation
- elbow extended
- belt around wrist
- isometric elevation
- 125° shoulder anteversion
- neutral rotation
- elbow extended
- belt around wrist
- isometric elevation

- 90° scaption
- 90° elbow flexion
- hands with neutral rotation on a table
- palms pressing down at the table
- 90° shoulder anteversion
- 25° elbow flexion
- palms pressing against each other

(Boettcher et al., 2008)

Zurich Universit

of Applied Science

SENSOR PLACEMENT EMG

Zurich University of Applied Sciences

SENSOR PLACEMENT XSENS

Exemplary presentation of sensor placement

https://shop.xsens.com/SiteFiles/temp/2ea637d74819e0d96c7e5b1cb4ea2fb2-800x800.png

DATA PROCESSING

Surface Electromyography

- Sampling rate: 2000Hz
- A/D-converted (NI USB-6210, 16-Bit, 250 kS/s, National Instruments®, Austin, TX)
- Rectification
- Root Mean Square (20ms)
- Butterworth low pass (400Hz) and high pass (10Hz) filters of 2nd order

Shoulder Angle Measurement

- System calibration using "T-Pose"
- Euler-sequence XZY
- Conversion in MATLAB (v 9.6.0 (R2019a), The MathWorks Inc., Natick, MA)

Zurich Universit

STATISTICAL ANALYSIS

$$t_{1} = \frac{\frac{1}{n}\sum_{i=1}^{n}pect.\,bike_{i} - \frac{1}{n}\sum_{i=1}^{n}pect.\,wp_{i} - 0.8SD}{\frac{S_{Diff}}{\sqrt{n-1}}}$$

$$t_{2} = \frac{\frac{1}{n}\sum_{i=1}^{n} pect. bike_{i} - \frac{1}{n}\sum_{i=1}^{n} pect. wp_{i} - (-0.8SD)}{\frac{S_{Diff}}{\sqrt{n-1}}}$$

STATISTICAL ANALYSIS

$$z_1 = \frac{sr_1 - \left(\frac{N(N+1)}{4}\right)}{\sqrt{\frac{N(N+1)(2N+1)}{24}}}$$

$$z_{2} = \frac{sr_{2} - \left(\frac{N(N+1)}{4}\right)}{\sqrt{\frac{N(N+1)(2N+1)}{24}}}$$

Zurich Universities of Applied Sciences and Arts

STATISTICAL ANALYSIS

Correlation coefficient 'r'

 ≤.29
 low

 .3 to .49
 medium

 ≥.5
 high

|r|

	Condition	ΔBike	90% CI	Raw	p-value
				Equivalence	-
_				Bounds	
Average			Anterior Deltoid		
	Bear Hug 2kg	-7.40	-8.93, -5.87	±2.36	1.000
	Bear Hug 3kg	-8.18	-10.05, -6.32	±2.88	1.000
	Bear Hug 4kg	-9.30	-11.32, -7.29	±3.11	1.000
	Wall Push	-7.31	-8.92, -6.40	± 4.05	.992
Peak					
	Bear Hug 2kg	-9.46	-13.01, -5.90	±5.49	.965
	Bear Hug 3kg	-11.67	-16.04, -7.29	±6.75	.966
	Bear Hug 4kg	-14.34	-18.75, -9.92	±6.81	.995
	Wall Push	-11.93	-16.255.51	±9.99	.788

Average			Middle Deltoid		
_	Bear Hug 2kg	-4.25	-5.59, -2.91	±2.07	.993
	Bear Hug 3kg	-3.98	-5.08, -2.88	±1.70	.998
	Bear Hug 4kg	-4.25	-5.15, -3.34	±1.40	1.000
	Wall Push	-2.25	-4.89, -1.15	±2.04	.849
Peak					
	Bear Hug 2kg	-7.00	-10.18, -3.83	±4.90	.870
	Bear Hug 3kg	-6.50	-9.04, -3.97	±3.91	.953
	Bear Hug 4kg	-7.10	-9.29, -4.90	±3.39	.994
	Wall Push	-3.53	-7.16, 0.08	±5.01	.311

Average			Posterior Deltoid		
	Bear Hug 2kg	1.54	0.76, 5.05	±2.37	.575
	Bear Hug 3kg	2.00	0.77, 5.02	±2.31	.715
	Bear Hug 4kg	1.83	0.51, 5.53	±2.43	.689
	Wall Push	1.78	1.06, 6.66	±3.00	.367
Peak					
	Bear Hug 2kg	6.00	1.50, 15.10	±8.62	.311
	Bear Hug 3kg	6.89	4.17, 14.94	±7.38	.605
	Bear Hug 4kg	7.37	3.97, 15.33	±7.47	.633
_	Wall Push	6.11	4.39, 13.90	±8.47	.485

Average	Pectoralis major					
	Bear Hug 2kg	1.02	-3.11, 3.47	±4.47	.017*	
	Bear Hug 3kg	0.85	-4.66, 3.09	±6.10	.021*	
	Bear Hug 4kg	-0.09	-7.94, 1.83	±6.52	.117	
	Wall Push	-0.01	-2.61, 2.57	±3.99	.009*	
Peak						
	Bear Hug 2kg	-3.09	-62.31, 5.60	±27.50	.367	
	Bear Hug 3kg	-1.86	-72.63, 6.68	±31.93	.212	
	Bear Hug 4kg	-2.93	-71.65, 6.07	±33.57	.117	
	Wall Push	-4.22	-12.01, 7.21	±11.05	.032*	

Zurich University of Applied Sciences

CORRELATION

Muscle	Average sEMG	r	p-value	95%CI
	(%MVIC)			
	(min/max)			
Anterior Deltoid	3.29 (1.24-9.22)	049	.886	606, .540
Middle Deltoid	3.21 (0.98-4.78)	.098	.761	504, .636
Posterior Deltoid	3.63 (2.17-11.24)	.084	.795	568, .730
Pectoralis Major	5.52 (1.45-12.32)	.203	.528	420, .696

Zurich University of Applied Sciences

CHOICE OF DYNAMIC SHOULDER EXERCISES

"Free-moving" character of Bear Hug vs. weightbearing during a bike ride

Concentric work during the exercises but not on the bike

Higher EMG activities during concentric work (Decker et al., 2003)

- Boettcher CE, Ginn KA, Cathers I. Standard maximum isometric voluntary contraction tests for normalizing shoulder muscle EMG. J Orthop Res. 2008;26(12):1591-1597.
- Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L. Erlbaum Associates; 1988.
- De Carli A, Vadala AP, Lanzetti R, et al. Early surgical treatment of first-time anterior glenohumeral dislocation in a young, active population is superior to conservative management at long-term follow-up. *International Orthopaedics (SICOT)*. 2019;43(12):2799-2805.
- Decker MJ, Tokish JM, Ellis HB, Torry MR, Hawkins RJ. Subscapularis Muscle Activity during Selected Rehabilitation Exercises. *Am J Sports Med.* 2003;31(1):126-134.
- Duc S, Bertucci W, Pernin JN, Grappe F. Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways. *Journal of Electromyography and Kinesiology*. 2008;18(1):116-127.
- Goldstein Y, Dolkart O, Kaufman E, et al. Bicycle-Related Shoulder Injuries: Etiology and the Need for Protective Gear. Isr Med Assoc J. 2016;18(1):23-26.
- Hurst HT, Sinclair J, Atkins S, Rylands L, Metcalfe J. Influence of wheel size on muscle activity and tri-axial accelerations during cross-country mountain biking. Journal of Sports Sciences. 2017;35(14):1342-1348.
- Ma R, Brimmo OA, Li X, Colbert L. Current Concepts in Rehabilitation for Traumatic Anterior Shoulder Instability. Curr Rev Musculoskelet Med. 2017;10(4):499-506.
- Mara CA, Cribbie RA. Paired-Samples Tests of Equivalence. Communications in Statistics Simulation and Computation. 2012;41(10):1928-1943.
- Weber A, Paraparan R, Lam PH, Murrell GAC. Return to Sport at 6 Months After Shoulder Surgery. Orthopaedic Journal of Sports Medicine. 2019;7(3):232596711983407.