

Can Critical Power be Estimated for Mean Maximal

Power Output Values

James Spragg 1, Peter Leo 2

¹ University of Cape Town, Health Physical Activity Lifestyle Sport Research Centre (HPALS), Cape Town, South Africa, <u>james@spraggperformance.com</u>*

²University Innsbruck, Department Sport Science, Innsbruck, Austria

Abstract:

Critical Power can be Estimated from Racing Data using Mean Maximal Power Outputs but not from Training Data

Keywords: Critical Power; Mean Maximal Power; Training, Racing

1. Introduction

The Critical Power (CP) represents an important threshold in exercise physiology (Poole, Burnley, Vanhatalo, Rossiter, & Jones, 2016) CP defines the border between the heavy and severe exercise domains (Burnley & Jones, 2018)and thus separates power outputs for which a physiological steady state can, and cannot, be achieved. It has been shown to have applicability to both stochastic and non-stochastic efforts within the severe exercise domain (Jones & Vanhatalo, 2017). CP is mathematically defined as the asymptote of the power- duration curve (Jones & Vanhatalo, 2017). Traditionally, CP was estimated from 3-5 performance trials conducted on successive days (Moritani, Ata, Devries, & Muro, 1981) but it has recently been shown that CP can be estimated from a single exercise session(Simpson & Kordi, 2017). However, even this condensed approach may not always be feasible inseason in a professional cycling population due to the required volume of training (Metcalfe et al., 2017). Previous research (Pinot & Grappe, 2011) has shown that record power outputs (MMP) from training and racing can be used to derive a hyperbolic power-duration curve.

2. Materials and Methods

strong (R = 0.728, p < 0.05), mean bias was 3Kj (95% CI -4 – 10 Kj), percentage error 14.53% \pm 17.02

There was a significant difference between CP_{test} and $CP_{training}$ values (p < 0.01). Correlation between CP_{test} and $CP_{training}$

Power meter data was collected from 11 professional cyclists (mean \pm SD, age 21.3 \pm 1.1y, body mass 70.8 \pm 7kg, height 182.1 \pm 5.4cm, VO2 max 74.2 \pm 3.1 ml·kg·min-1) Data was sub-divided by mode of exercise: training or racing.

Participants performed 3 performance trials (2, 5 and 12 minutes). Critical Power (CP_{test}) and W' (W'_{test}) were interpolated from these performance trials

MMP values for the duration of 120-720s were collected from both racing and training

in the subsequent 3 months. Critical Power and W' estimates were interpolated exclusively from racing data (CP_{race}, W'_{race}) or training data (CP_{training} and W'_{training})

3. Results

 CP_{test} and CP_{race} were not significantly different (p > 0.05). Correlation between CP_{test} and CP_{race} was strong (R= 0.982, p < 0.001) (figure 1a), mean bias was 9w (95% CI 6 – 25w) (figure 1b) percentage error 2.34% \pm 1.95.

 W'_{test} and W'_{race} were not significantly different (p > 0.05). Correlation between W'_{test} and W'_{race} was was strong (R=0.904, p < 0.001) (figure 1c) mean bias was 60w (95% CI 27 – 92w) (figure 1d) percentage error 15.2% \pm 3.39. There was a significant difference between CP_{race} and $CP_{training}$ (figure 2a)

3.1. Figures

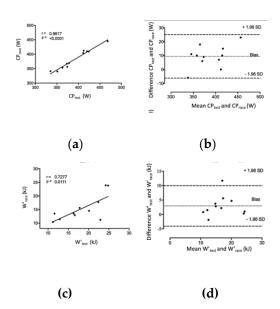


Figure 1. a) Correlation between CP_{race} and CP_{test} b) Bland-Altman plot of CP_{race} and CP_{test} c) Correlation between W'_{race} and W'_{test} d) Bland-Altman plot of W'_{race} and W'_{test}

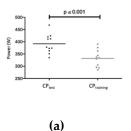


Figure 2. a) Comparison CPtraining and CPtest

4. Discussion

Valid CP estimates can be derived from MMP from racing. Accurate estimates for CP and W' cannot be derived from MMP values achieved exclusively in training.

5. Practical Applications.

Coaches and practitioners can use MMP values derived from races to accurately estimate the critical power

Funding: This research received no external funding

Acknowledgments: The researchers would like to Thank Tirol KTM Professional Cycling team

Conflicts of Interest: The authors declare no conflict of interest.

References

Burnley, M., & Jones, A. M. (2018).

Power–duration relationship:
Physiology, fatigue, and the limits
of human performance. *European Journal of Sport Science*, 18, 1–12.

Jones, A. M., & Vanhatalo, A. (2017).

The 'Critical Power' Concept:
Applications to Sports
Performance with a Focus on
Intermittent High-Intensity
Exercise. Sports Medicine, 47, 65–
78.

Metcalfe, A. J., Menaspà, P., Villerius, V., Quod, M., Peiffer, J. J., Govus,

- A. D., & Abbiss, C. R. (2017). Within-season distribution of external training and racing workload in professional male road cyclists. *International Journal of Sports Physiology and Performance*, 12, 142–146.
- Moritani, T., Ata, A. N., Devries, H. A., & Muro, M. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. *Ergonomics*. https://doi.org/10.1080/001401381
- Pinot, J., & Grappe, F. (2011). The record power profile to assess performance in elite cyclists.

 International Journal of Sports

 Medicine, 32, 839–844.

08924856

- Poole, D. C., Burnley, M., Vanhatalo, A., Rossiter, H. B., & Jones, A. M. (2016). Critical power: An important fatigue threshold in exercise physiology. *Medicine and Science in Sports and Exercise*, 48. https://doi.org/10.1249/MSS.00000 000000000939
- Simpson, L. P., & Kordi, M. (2017). Comparison of critical power and W' derived from 2 or 3 maximal tests. *International Journal of Sports Physiology and Performance*, 12, 825–830.