Science & Cycling

Influence of stress and recovery on endurance performance Dr. Ruby Otter September 22nd, 2021

School of Sport Studies

• Performance decrement is the major outcome of overtraining

• How does perceived stress and recovery influence performance development?

Model

Process

Outcome PhD thesis Otter 2016 - Adapted from Kennta & Hassmen 1998

Design

- 115 athletes
 - Runners
 - Cyclists
 - Triathletes
 - Ice-skaters
 - Rowers
- 2 years

Endurance performance indicators are influenced by stress & recovery

Methods – Training log

- Daily training log
 - Training duration (min)
 - Session RPE

Very, very light Very light 9 10 **Fairly light** 11 12 13 Somewhat hard 14 15 Hard 16 Very hard 18 19 Very, very hard 20

Rating of Perceived Exertion

6

Foster et al 2001; Seiler & Kjerland 2006

Methods – Stress & recovery

• Weekly to 3-weekly RESTQ-sport

Methods – Performance

Running (Otter et al 2015)

• Running Economy

Cycling (Lamberts et al 2013)

- LSCT
 - Power output at 90% HR_{max}

Longitudinal stress & recovery

- 20 female athletes
- 1 year 8 submax tests 16 RESTQ-sport

	n = 20
VO_{2max} (mL·kg ⁻¹ ·min ⁻¹)	50.3 ± 4.6
PPO (W·kg ⁻¹)	4.87 ± 0.39
PPO (W)	301 ± 24

Conclusion

Second study

- 16 runners (VO₂max 60.9 ± 5.90 ml·kg⁻¹·min⁻¹)
- 3 weeks baseline

• Negative life event (NLE)

- 3 weeks follow up
- Submaximal performance test

Results – Training & Running Economy

Second conclusion

- A NLE disturbs psychosocial stress & recovery over a relatively short period
- A NLE impairs running economy slightly but significantly

Practical implications

Do not neglect an athlete's personal life

How to monitor?

Monitor physical and psychosocial stress & recovery

Increased training load within ~5 days prior to these outcomes	Power or speed	HR	RPE	Symptoms of stress
	\leftrightarrow	\downarrow	1	1
	1	\leftrightarrow	↑	↑

Roete et al 2021

How to act?

TRIC

TRIQ.ai

- Lower (training) stress
- Improve recovery

Follow up Coach in Control

- Research into planned and actual training load
 - Relationship with perceived stress and recovery
 - Relationship with performance
- Feedback in a coach-dashboard

Questions? - t.a.otter@pl.hanze.nl

Photo cc- by Adam Bowie

Hanze University of Applied Sciences Groningen

School of Sport Studies

Thesis outline

Chapter 1	Monitoring perceived stress and recovery in relation to cycling performance in female athletes (Otter et al. 2015)
Chapter 2	A negative life event impairs psychosocial stress, recovery and running economy
	of runners (Otter et al. 2016)
Chapter 3	Monitoring training intensity, submaximal heart rate and running economy of
	competitive runners
Chapter 4	A delay between high load and increased injury rate: using an individual
	approach in high-level competitive runners
Chapter 5	A new submaximal ergometer rowing test to predict 2000 meter rowing
	performance

Female cyclists

	Fixed	Random				
n = 110	Intercept	Estimate	Level 2	Level 1	-2*	р
	constant		between cyclists	within cyclists	Log-likelihood	
Empty model	67.06 (1.13)	-	22.63 (8.12)	15.56 (2.32)	657.2	-
∑General stress	71.25 (2.07)	-2.68 (1.09)	24.58 (8.61)	14.39 (2.15)	651.5	0.02*
∑General recovery	66.31 (3.61)	0.23 (1.08)	22.79 (8.20)	15.53 (2.31)	657.2	0.82
∑Sport-specific stress	69.25 (1.77)	-1.72 (1.06)	22.80 (8.15)	15.11 (2.25)	654.6	0.11
∑\$port-specific recovery	63.14 (2.47)	1.44 (0.80)	25.28 (8.92)	14.74 (2.20)	654.2	0.08
∑Recovery - ∑Stress	65.08 (1.53)	0.65 (0.32)	25.03 (8.84)	14.62 (2.18)	653.3	0.05*
Emotional stress	70.88 (1.88)	-2.40 (0.92)	24.75 (8.73)	14.28 (2.13)	650.9	0.01*
Fatigue	69.95 (1.65)	-1.79 (0.72)	24.32 (8.56)	14.40 (2.15)	651.4	0.02*
Physical complaints	69.06 (1.52)	-1.27 (0.64)	22.25 (7.97)	14.98 (2.23)	653.4	0.05*
Self-efficacy	62.66 (1.95)	1.67 (0.58)	26.91 (9.38)	13.86 (2.07)	649.7	0.01*