

Experimental validation of a computer-vision based method to assess the aerodynamic drag of cyclists

Cédric Lemaitre, Matthieu Voiry, Cyrille André, Antoine Lavault contact@apeira-technologies.fr

Science and Cycling 22-23 September 2021, Leuven, Belgium

© Apeira Technologies

www.apeira-technologies.fr

Context

- Aerodynamic drag = 80-90% of resistive forces
- Effective Frontal Area (ACd) : $F = 0.5 ACd \rho v^2$
- ACd should be reduced so must be quantified
- Existing Method :
 - Wind tunnel
 - Dynanometric measurement
 - Deceleration + Linear regression
 - Recently 3D digitilization + CFD

3D + CFD : advantages

- Low operating and equipment costs
- Measuring conditions closer to real world
- Many experiments are possible :
 - Simulating different wind conditions
 - Simulating different cyclist speeds
 - Assessing different equipments (helmet, wheel, ...)
 - Simulating team pursuit

Ergocycle method (1)

- Set-up:

- 4 RGB-D Sensors
- 4 Nano-computers (slaves)
- 1 master computer (manage digitalization)
- calibration patterns on the floor

Ergocycle method (2)

- Cyclist Digitalization using a Human Body Model :

- No pre or post-processing work
- Model is composed of:
 - Anatomical features
 - Pose features

Ergocycle method (3)

- OpenFoam solver

- Surface discretized with polyhedral surface mesh
- k-ε turbulence model
- Numerical wind tunnel = 18 m x 18 m x 54 m box

Experimental data (1)

- Aero Concept Engineering's facility in Magny-Cours (France)

- single return closed-circuit wind tunnel
- width: 2.3 m, height: 2.2 m, length: 4,75 m
- 6-components balance (500Hz for 15 seconds)
- air temperature, wind speed and atmospheric pressure

-Data processing:

- averaging the values given by the balance
- computing effective frontal area (to compensate for changes in air parameters):

$$AC_d = \frac{2F}{\rho V^2}$$

Experimental data (2)

- Subjects

Subject ID	Height (cm)	Weight (kg)	Age		
1	177	85	38		
2	174	64	18		
3	161	53	12		

- Speeds

- 30 km/h
- 40 km/h
- 50 km/h

- Crank angles
 - 0°
 - 45°
 - 90°
 - 135°

- Static positions

- Uprigth position
- Brake-hoods position
- Dropped position

Experimental data (3)

- Experimental conditions

Mesurement ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Position	BH	BH	BH	BH	BH	BH	BH	BH	U	U	U	D	D	D	BH
Crank angle	0	45	90	135	0	45	90	135	135	135	135	135	135	135	135
Wind speed	30	30	30	30	50	50	50	50	30	40	50	30	40	50	40

- 15 measures x 3 athletes = 45 measures
- We reproduced the same conditions with our system
 - 3D models
 - CFD simulations
 - Simulated forces -> ACd

Results (1)

- Comparison wind tunnel / our method

Correlation = 0,84

Proportionnality = 1,02

Results (2)

- Comparison wind tunnel / our method

-0,03

Averages

www.apeira-technologies.f

Discussion

- Drag measurement with our method

- Good correlation with wind tunnel data
- Proportionality ≈ 1
- Weak and non-systematic bias
- Excellent agreement between measurements

- Important note

- Average difference between measurements $\approx 4\%$
- BUT cyclist's inablity to perfectly reproduce position
- Theorically : differences mean = 0 ; std = 0,011
 in this study : 0,0078 0,014
- ➔ In reality difference between measurements << 4%</p>

Conclusion

- A new drag assesment method based on computer vision
- Experimental data from wind tunnel
- Results
 - Good correlation between our method and experimental data
 - Excellent agreement
 - Measurements differences << 4%
 - Validation of our method

- Future works

Validation for wind coming from different directions Validation in real conditions

Questions ?

© Apeira Technologies

www.apeira-technologies.f