Learning from field data of professional cyclists; from winning bunch sprints to the effect of accumulating fatigue on performance

Prof Robert P. Lamberts
Department of Sport Science, Stellenbosch University, South Africa

Introduction

50

Introduction

Introduction

Laboratory data

Field data

WHAT CAN WE LEARN FROM FIELD DATA IN ELITE CYCLISTS

Sprint tactics in the TDF
Case-study of a world-class sprinter

Power Profile of Top 5 Results in World Tour Cycling Races

Effects of different stage type

Changes in Power output with accumulating level of work completed

Sprint tactics in the Tour de France

Mask

bRIEF REPORT
Demands of the Tour de France: A Case Study of a World-Class Sprinter (Part I)
Teun van Erp, Marcel Kittel, and Robert P. Lamberts

$$
\begin{aligned}
& \text { Human Kinetics } \underset{\text { BRIE REPORT }}{\text { St }}
\end{aligned}
$$

Sprint Tactics in the Tour de France: A Case Study of a World-Class Sprinter (Part II)

Teun van Erp, Marcel Kittel, and Robert P. Lamberts

Sprinting tactics and characteristics

Highly successful sprinter shared his PO data from 4 TDF editions (2013, 2014, 2016 and 2017)

Riding for 2 teams, namely:
Giant-Shimano (2013, 2014) and

| | All sprints | Min | Max |
| :--- | :---: | :---: | :---: | :---: |
| Duration
 (s) | 13 ± 3 | 7 | 17 |
| PO
 (W) | 1411 ± 117 | 1026 | 1576 |
| Speed
 (km/h) | 66 ± 6 | 52 | 73 |
| Cadence
 (rpm) | 112 ± 5 | 103 | 121 |

Etixx-Quick step (2016,2017)

Sprinting tactics - last 3 minutes

擂9
6 out of 11 sprint resulted in a win
team Quick-step
team Shimano

Won versus lost

Sprinting tactics and characteristics

Take home messages

High-power outputs are needed to win sprint stages in the TDF
Sprint tactics and demands differ based on team tactics
Sprint tactics have pro's and con's at different time points
Position at 30 seconds before the finish is important to win a sprint

Based team tactics - sprint training might need to differ

Power Profile of Top 5 Results in World Tour Cycling Races

Power Profile of Top 5 Results in World Tour Cycling Races
Teun van Erp, Robert P. Lamberts, and Dajo Sanders

Power Profile of Top 5 Results in World Tour Cycling Races

Top 5 results of 18 WT cyclists during 177 races (201220019)

Flat:	$n=84$
Sm $_{\text {sprint }}$	$n=49$
Sm $_{\text {uphill }}$	$n=19$
Mountain	$n=25$

	FLAT	SM $_{\text {sprint }}$	SM $_{\text {mountain }}$	Mountain
Body mass (kg)	80 ± 7	76 ± 10	66 ± 5	65 ± 5
10 sec MMP	1611 ± 182	1376 ± 258	1048 ± 90	1038 ± 74
60 sec MMP	785 ± 67	762 ± 99	666 ± 39	670 ± 30
	494 ± 47	490 ± 35	461 ± 25	466 ± 28
5 min MMP	423 ± 27	427 ± 31	408 ± 25	409 ± 32
20 min MMP				
	399 ± 25	405 ± 32	389 ± 25	389 ± 33
CP (W)	30 ± 8	26 ± 4	23 ± 2	24 ± 3
W' (kJ)				

CP and W' calculated from linear work time model using MMP - 3,5,10 and 20 min MMP

Power Profile of Top 5 Results in World Tour Cycling Races

Flat

Semi-mountain - flat finish

Semi-mountain - uphill finish

Mountain

van Erp, Lamberts, Sanders. IJSPP 2021 - Accepted for publication

Power Profile of Top 5 Results in World Tour Cycling Races

Power profile

Mean Maximum Power output (MMP) over different time frames

Short duration
Long duration

Power Profile of Top 5 Results in World Tour Cycling Races

Short duration MMP's (≤ 60 seconds)

Flat
SM (sprint)
SM (uphill)
Mountain

Power Profile of Top 5 Results in World Tour Cycling Races

Long duration MMP's (≥ 3 minutes)

Flat SM (sprint) SM (uphill) Mountain

Take home messages:
Top-5 Flat and SM $_{\text {sprint }}$: short duration MMP's (especially 5, 10 and 15 sec) are important
Reference values for successful sprints:

	Flat	SM $_{\text {sprint }}$
5 sec	1370 ± 211	1238 ± 205
10 sec	1259 ± 216	1152 ± 2206
15 sec	1150 ± 209	1064 ± 181
30 sec	906 ± 154	841 ± 130
60 sec	701 ± 80	646 ± 80

Top-5 $\mathrm{SM}_{\text {uphill }}$ and MT races : long duration MMP's (especially $\geq 10 \mathrm{~min}$) are important
Reference values for successful sprints:

	Flat	SM $_{\text {sprint }}$
3 min	7.0 ± 0.6	6.7 ± 0.5
5 min	6.4 ± 0.5	6.4 ± 0.4
10 min	5.8 ± 0.4	6.1 ± 0.3
20 min	5.1 ± 0.5	5.7 ± 0.3
60 min	4.3 ± 0.5	4.7 ± 0.6

Changes in Power output with accumulating level of work completed

Maintaining Power Output with Accumulating Levels of Work Done Is a Key Determinant for Success in Professional Cycling

Changes in Power output with accumulating level of work completed

Professional cycling races in male cyclists
Duration: 4 to 7 hours
Energy expenditures: ~3700 kJ (up to > 5700 kJ)

--• Mountain stages
-.- Semi Mountain TD
-•• Flat stages

Changes in Power output with accumulating level of work completed

	Climbers		Sprinters	
	Highly successful	Less successful	Highly successful	
Less successful				
Seasons	15	30	16	
Riders	5	13	7	
PCS points	949 ± 477	154 ± 98	936 ± 480	
Top-10 classifications	9 ± 2	2 ± 2	19 ± 2	

* >400 PCS - highly successful

Changes in Power output with accumulating level of work completed

Climbers

Sprinters

\qquad

Changes in Power output with accumulating level of work completed

MMP profiles with accumulating levels of work completed

Sprinters

Changes in Power output with accumulating level of work completed

MMP profiles with accumulating levels of work completed
$10 \sec$ MMP

20 min MMP

Sprinters

Changes in Power output with accumulating level of work completed

MMP profiles with accumulating levels of work completed

Changes in Power output with accumulating level of work completed

MMP profiles with accumulating levels of work completed

10 sec MMP

20 min MMP

CLIMBERS

Changes in Power output with accumulating level of work completed

Take home messages:

Successful sprinters can maintain short duration MMP's (esp. 10 sec) better with accumulating level of kJ burnt
Changes in 10 sec MMP's

	Highly successful	Less successful
$10 \mathrm{~kJ} / \mathrm{kg}$	-0.4	-0.5
$20 \mathrm{~kJ} / \mathrm{kg}$	-0.5	-1.9
$30 \mathrm{~kJ} / \mathrm{kg}$	-3.1	-3.1
$40 \mathrm{~kJ} / \mathrm{kg}$	-4.4	-5.9
$50 \mathrm{~kJ} / \mathrm{kg}$	-8.6	-17.1

Successful climbers can maintain long duration MMP's (esp. 20 min) better with accumulating level of kJ burnt.
Changes in 20 min MMP's

	Highly successful	Less successful
$10 \mathrm{~kJ} / \mathrm{kg}$	-0.3	-1.4
$20 \mathrm{~kJ} / \mathrm{kg}$	-2.2	-3.2
$30 \mathrm{~kJ} / \mathrm{kg}$	-2.4	-4.4
$40 \mathrm{~kJ} / \mathrm{kg}$	-2.6	-5.4
$50 \mathrm{~kJ} / \mathrm{kg}$	-4.0	-9.0

Learning from field data in professional cyclists

Provide novel insight into cycling demands in the field (specific races / team tactics)
Field data can assist with assessing 'strength' and 'weaknesses' of a rider
Field data can assist with monitoring \& optimizing training programs

Field data allows to gain insights into changes in performance with accumulating levels of work done ('fatigue').

Field data can provide insights into the best role for a cyclist within a team.
Field data can play a role in talent identification and development (specialisation)

Learning from field data of professional cyclists; from winning bunch sprints to the effect of accumulating fatigue on performance

Prof Robert P. Lamberts
Department of Sport Science, Stellenbosch University, South Africa

