Learning from field data of professional cyclists; from winning bunch sprints to the effect of accumulating fatigue on performance

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Prof Robert P. Lamberts

Department of Sport Science, Stellenbosch University, South Africa

Email: rplam@hotmail.com or roblam@sun.ac.za

Twitter: @RobLamberts

Introduction

Introduction

Introduction

Laboratory data

Field data

WHAT CAN WE LEARN FROM FIELD DATA IN ELITE CYCLISTS

Sprint tactics in the TDF

Case-study of a world-class sprinter

Power Profile of Top 5 Results in World Tour Cycling Races

Effects of different stage type

Changes in Power output with accumulating level of work completed

Sprint tactics in the Tour de France

International Journal of Sports Physiology and Performance, (Ahead of Print) https://doi.org/10.1123/jspp.2020/0700 © 2021 Human Kinetics, Inc.

Human Kinetics

Demands of the Tour de France: A Case Study of a World-Class Sprinter (Part I)

Teun van Erp, Marcel Kittel, and Robert P. Lamberts

International Journal of Sports Physiology and Performance, (Ahead of Print) https://doi.org/10.1123/jspp.2020-0701 © 2021 Human Kinetics, Inc.

Sprint Tactics in the Tour de France: A Case Study of a World-Class Sprinter (Part II)

Teun van Erp, Marcel Kittel, and Robert P. Lamberts

Sprinting tactics and characteristics

Highly successful sprinter shared his PO data from 4 TDF editions (2013, 2014, 2016 and 2017)

Riding for 2 teams, namely:

Giant-Shimano (2013, 2014)

and

Etixx-Quick step (2016,2017)

	All sprints	Min	Max
Duration (s)	13 ± 3	7	17
PO (W)	1411 ± 117	1026	1576
Speed (km/h)	66 ± 6	52	73
Cadence (rpm)	112 ± 5	103	121

Sprinting tactics – last 3 minutes

Won versus lost

Sprinting tactics and characteristics

Take home messages

High-power outputs are needed to win sprint stages in the TDF

Sprint tactics and demands differ based on team tactics

Sprint tactics have pro's and con's at different time points

Position at 30 seconds before the finish is important to win a sprint

Based team tactics - sprint training might need to differ

International Journal of Sports Physiology and Performance, (Ahead of Print) https://doi.org/10.1123/ijspp.2021-0081 © 2021 Human Kinetics, Inc.

Human Kinetics

Power Profile of Top 5 Results in World Tour Cycling Races

Teun van Erp, Robert P. Lamberts, and Dajo Sanders

Top 5 results of 18 WT cyclists during 177 races (2012-2019)

n=84
n=49
n=19
n=25

	FLAT	SM _{sprint}	SM _{mountain}	Mountain
Body mass (kg)	80 ± 7	76 ± 10	66 ± 5	65 ± 5
10 sec MMP	1611 ± 182	1376 ± 258	1048 ± 90	1038 ± 74
60 sec MMP	785 ± 67	762 ± 99	666 ± 39	670 ± 30
5 min MMP	494 ± 47	490 ± 35	461 ± 25	466 ± 28
20 min MMP	423 ± 27	427 ± 31	408 ± 25	409 ± 32
CP (W)	399 ± 25	405 ± 32	389 ± 25	389 ± 33
W' (kJ)	30 ± 8	26 ± 4	23 ± 2	24 ± 3

CP and W' calculated from linear work time model using MMP – 3,5,10 and 20 min MMP

Semi-mountain – uphill finish

Semi-mountain – flat finish

van Erp, Lamberts, Sanders. IJSPP 2021 – Accepted for publication

Power profile

1400-

1200-

1000-

800-

600-

Mean Maximum Power output (MMP) over different time frames

22-Power Output (W•kg⁻¹ 20-ىدە ۋ مۇرۇش<mark>ۇر ئېسىن</mark>ى ،،،، 18-as by an and the second s 16-14-12-10-& 8008 e little 8-6-4-10 15 5 30 60 **Duration (sec)** SM (uphill) SM (sprint) Flat Mountain

Short duration MMP's (≤ 60 seconds)

Vvn Erp, Lamberts, Sanders. IJSPP 2021 – Accepted for publication

Long duration MMP's (≥ 3 minutes)

van Erp, Lamberts, Sanders. IJSPP 2021 – Accepted for publication

Take home messages:

Top-5 Flat and SM_{sprint} : short duration MMP's (especially 5, 10 and 15 sec) are important

Reference values for successful sprints:

	Flat	SM _{sprint}
5 sec	1370 ± 211	1238 ± 205
10 sec	1259 ± 216	1152 ± 2206
15 sec	1150 ± 209	1064 ± 181
30 sec	906 ± 154	841 ± 130
60 sec	701 ± 80	646 ± 80

Top-5 SM_{uphill} and MT races : long duration MMP's (especially ≥10 min) are important

Reference values for successful sprints:

	Flat	SM _{sprint}
3 min	7.0 ± 0.6	6.7 ± 0.5
5 min	6.4 ± 0.5	6.4 ± 0.4
10 min	5.8 ± 0.4	6.1 ± 0.3
20 min	5.1 ± 0.5	5.7 ± 0.3
60 min	4.3 ± 0.5	4.7 ± 0.6

van Erp, Lamberts, Sanders. IJSPP 2021 – Accepted for publication

Maintaining Power Output with Accumulating Levels of Work Done Is a Key Determinant for Success in Professional Cycling

TEUN VAN ERP1, DAJO SANDERS2, and ROBERT P. LAMBERTS1

Medicine & Science

Professional cycling races in male cyclists

Duration: 4 to 7 hours Energy expenditures: ~3700 kJ (up to > 5700 kJ)

- Mountain stages
- -- Semi Mountain TD
- ---- Flat stages

Lamberts and van Erp – submitted paper

26 professional cyclists 17,900 power files 85 seasons

	Clim	bers	Sprii	nters
(Highly successful	Less successful	Highly successful	Less successful
Seasons	15	30	16	24
Riders	5	13	7	8
PCS points	949 ± 477	154 ±98	936 ± 480	173 ± 54
Top-10 classifications	9 ± 2	2 ± 2	19 ± 2	7 ± 4

* >400 PCS – highly successful

MMP profiles with accumulating levels of work completed

ABSOLUTE CHANGES IN PO

MMP profiles with accumulating levels of work completed

RELATIVE CHANGES IN PO

MMP profiles with accumulating levels of work completed

ABSOLUTE CHANGES IN PO

20 min MMP

MMP profiles with accumulating levels of work completed

10 sec MMP

RELATIVE CHANGES IN PO

Take home messages:

Successful sprinters can maintain short duration MMP's (esp. 10 sec) better with accumulating level of kJ burnt

Changes in 10 sec MMP's

	Highly successful	Less successful
10 kJ/kg	- 0.4	- 0.5
20 kJ/kg	- 0.5	- 1.9
30 kJ/kg	- 3.1	- 3.1
40 kJ/kg	- 4.4	- 5.9
50 kJ/kg	- 8.6	- 17.1

Successful climbers can maintain long duration MMP's (esp. 20 min) better with accumulating level of kJ burnt.

Changes in 20 min MMP's

	Highly successful	Less successful
10 kJ/kg	- 0.3	- 1.4
20 kJ/kg	- 2.2	- 3.2
30 kJ/kg	- 2.4	- 4.4
40 kJ/kg	- 2.6	- 5.4
50 kJ/kg	- 4.0	- 9.0

Learning from field data in professional cyclists

Provide novel insight into cycling demands in the field (specific races / team tactics)

Field data can assist with assessing 'strength' and 'weaknesses' of a rider

Field data can assist with monitoring & optimizing training programs

Field data allows to gain insights into changes in performance with accumulating levels of work done ('fatigue').

Field data can provide insights into the best role for a cyclist within a team.

Field data can play a role in talent identification and development (specialisation)

Learning from field data of professional cyclists; from winning bunch sprints to the effect of accumulating fatigue on performance

UNIVERSITY IYUNIVESITHI UNIVERSITEIT

Prof Robert P. Lamberts

Department of Sport Science, Stellenbosch University, South Africa

Email: rplam@hotmail.com or roblam@sun.ac.za

Twitter: @RobLamberts

