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Predicting Sports Outcomes

▪ Mostly in team sports

▪ Football, NBL, NBA, NHL, ...

▪ A range of techniques

▪ Probabilistic models

▪ Monte Carlo

▪ Machine learning

▪ Classification problem

▪ External conditions are similar or easy to

model
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Is it possible to predict top 10 riders of
a race based on public data?

MONEYWHEEL



Motivation
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• Fans, journalists and coaches try to 

estimate how a certain race might unfold;

• Predicting the outcomes of a race needs 

domain-expertise;

• Because of the many factors involved and 

the available historical data, it is an 

interesting challenge for machine 

learning.

• Goal: Demonstrate the potential of 

Machine Learning Techniques



Machine Learning Basics
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Results from relevant races

Rider overall performance

Rider form

Proposed Framework
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Features

▪ Selected races

▪ What are similar races? (e.g. classics)

▪ Results from current and previous years

▪ Average points in:

▪ Different types of GC stages

▪ Different types of one-day races

▪ Form: Results in the past 6 weeks

▪ Evolution of the past years
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Features

▪ Selected races

▪ What are similar races? (e.g. classics)

▪ Results from current and previous years

▪ Average points in:

▪ Different types of GC stages

▪ Different types of one-day races

▪ Form: Number of points gained in 6 weeks leading to the race

▪ Evolution of the past years

▪ Best result and time since best result

▪ Rider profile (age and career length)
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{ 𝑟1,1, 𝑤1,1 , 𝑟1,2, 𝑤1,2 , … , 𝑟1,𝑖1 , 𝑤1,𝑖1 }

{ 𝑟𝑗,1, 𝑤𝑗,1 , 𝑟𝑗,2, 𝑤𝑗,2 , … , 𝑟𝑗,𝑖𝑗 , 𝑤𝑗,𝑖𝑗 }

… Model Training

Ranker

𝑓(𝑅)

𝑅𝑁 { 𝑟𝑛 1, 𝑦𝑛,1 , … , 𝑟𝑛,𝑖𝑛 , 𝑦𝑛,𝑖𝑛 }

Learn-to-Rank



Metric: NDCG



Metric: NDCG
RANK WEIGHT

1 10

2 9

3 8

4 7

5 6

6 5

7 4

8 3

9 2

10 1



Metric: NDCG

NAME
REAL

RANK
WEIGHT

DISCOUNTED 

GAIN

1 MATHIEU VAN DER POEL 2 9 9.0 

2 GREG VAN AVERMAET 3 8 5.0

3 WOUT VAN AERT 6 5 2.5

4 OLIVER NAESSAN 33 0 0

5 JASPER STUYVEN 4 7 2.7

6 MATTEO TRENTIN 57 0 0

7 MICHAEL MATHEWS 21 0 0

8 DYLAN VAN BAARLE 10 1 0.3

9 FLORIAN SENECHAL 9 2 0.6

10 ANTHONY TURGIS 8 3 0.8



Results
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Liege – Bastogne – Liege Feature Importance
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Prediction evolution: Liege – Bastogne – Liege

Julian Alaphilippe
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Conclusions

▪ Prediction NDCG similar to mass fan

▪ Applications:

▪ Fans

▪ Journalists
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www.wiewintdekoers.be

www.whowillwintherace.com

http://www.wiewintdekoers.be/
http://www.whowillwintherace.com/
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Conclusions
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▪ Further development:

▪ Identification of future talent

▪ Additional insight to understand how a rider compares to others
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Conclusions

▪ Prediction NDCG similar to mass fan

▪ Applications:

▪ Fans

▪ Journalists

▪ Further development:

▪ Identification of future talent

▪ Additional insight to understand how a rider compares to others

▪ Demonstrates the power of Machine Learning applied to sports

▪ Tool which can help make sense of all the data
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Future Work

Conditional Distribution Estimation
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Clustering and automatic 

selection of related races



Frontier in Sports and 
Active Living

Special issue on Using 
Artificial Intelligence to 
Enhance Sport Performance
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QUESTIONS?

leonid.kholkine@uantwerpen.be



Who will win the World Championship?
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NAME

1 WOUTVAN AERT

2 JULIAN ALAPHILIPPE

3 MATHIEU VAN DER POEL

4 TADEJ POGACAR

5 SONNY COLBRELLI

6 JASPER STUYVEN

7 MICHAEL MATTHEWS

8 PRIMOZ ROGLIC

9 MATEJ MOHORIC

10 ALEXANDRE KRISTOFF

Do you agree?

Vote for your top 5:

https://poll.whowillwintherace.com

https://poll.whowillwintherace.com/


Boosting Trees
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Shoaran, Mahsa & Haghi, Benyamin & Taghavi, Milad & Farivar, Masoud & Emami, 

Azita. (2018). Energy-Efficient Classification for Resource-Constrained Biomedical 

Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 

PP. 1-1. 10.1109/JETCAS.2018.2844733. 
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Fold Ensemble
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• Valid fold: Minimum number of iterations

• Valid ensemble: Minimum number of valid 

folds
+

Valid Fold 1

Valid Fold 2

Valid Fold N
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Algorithm: LambdaMART
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