

Monitoring pulmonary VO₂ on-kinetics during a 2.5-year period in competitive youth cyclists

Matthias Hovorka, Bernhard Prinz, Manfred Zöger, Clemens Rumpl and Alfred Nimmerichter

Matthias Hovorka PhD-Student Training and Sports Sciences University of Applied Sciences – Wiener Neustadt

Austrian Network for Higher Education

FACHHOCHSCHULE

Aim:

• To investigate longitudinal changes of the VO_2 on-kinetics in response to moderate- and heavyintensity exercise in a group of competitive youth cyclists

Participants:

- N = 9 male and female competitive youth cyclists
- Training history of 2 to 5 years
- Regular endurance training volume of ~ 10 h per week
- Training volume maintained/increased during the study

Study design:

- Two lab visits in Feb-2017, May-2018 and Sep-2019
- Anthropometric measures
- Ramp incremental test (20 W.min⁻¹)
- Two constant-workrate step-transitions
 - Moderate intensity
 - Heavy intensity

Monitoring pulmonary VO2 on-kinetics during a 2.5-year
period in competitive youth cyclistsIntroductionMethodsResultsDiscussion

Constant-workrate transitions:

- 3 min baseline at 40 W
- 6 min at WR 90% VT (moderate intensity)
- 8 min recovery at 40 W
- 6 min at WR $\Delta 50 \%^1$ (heavy intensity)
- 90 to 100 rpm
- Pulmonary ventilation and gas exchange measured breath-by-breath
- Parameter estimates of the VO₂ on-kinetic response single exponential model

Analysis:

- Repeated measures ANOVA and Tukey's post-hoc tests
- Statistical significance: p < 0.05

 $^{1}\Delta 50 \% = VT + (W_{max} - VT) * 0.5$

Participants characteristics:

Participant characteristics (mean ± SD)

	Feb-2017	May-2018	Sep-2019
No. of participants	9	9	9
Age (y)	14.5 ± 1.1	15.7 ± 1.0	16.7 ± 1.2
Stature (cm)	165.3 ± 12.5	170.7 ± 11.4	175.0 ± 11.0
Body mass (kg)	53.9 ± 12.7	59.1 ± 11.7	64.0 ± 11.1
VO _{2peak} (mL·min ⁻¹ ·kg ⁻¹)	62.6 ± 4.2	61.1 ± 4.6	68.4 ± 7.6 *, \$

significance values determined from Tukey's post-hoc test; * significantly different from 2017; * significantly different from 2018; VO_{2peak} = maximum oxygen uptake

Moderate-intensity transition:

Pulmonary oxygen uptake on-kinetic parameters during moderate intensity exercise (mean \pm SD)

	Feb-2017	May-2018	Sep-2019
Workrate (W)	127 ± 27	135 ± 30	170 ± 34 ^{*, \$}
Phase II VO2 amplitude (mL·min-1)	702 ± 306	715 ± 306	1236 ± 398 *, \$
Phase II VO2 gain (mL·min ^{-1.} W ⁻¹)	10.5 ± 1.1	9.4 ± 1.0	11.3 ± 1.1 \$
Phase II VO2 time delay (s)	11.8 ± 5.5	14.5 ± 4.5	8.3 ± 5.0
Phase II VO2 time constant (s)	23.1 ± 7.7	11.4 ± 5.7 *	14.1 ±5.0 *
VO₂MRT (s)	34.9 ± 3.1	25.9 ± 7.8 *	22.4 ± 7.1 *

significance values determined from Tukey's post-hoc test; * significantly different from 2017; * significantly different from 2018; MRT = mean response time

Monitoring pulmonary VO2 on-kinetics during a 2.5-year period in competitive youth cyclists Introduction Methods Results Discussion

Heavy-intensity transition:

Pulmonary oxygen uptake on-kinetic parameters during heavy intensity exercise (mean \pm SD)

	Feb-2017	May-2018	Sep-2019
Workrate (W)	218 ± 44	243 ± 48 *	279 ± 51 *, \$
Phase II VO2 amplitude (mL-min-1)	1664 ± 538	1827 ± 483	2333 ± 600 ^{*, §}
Phase II VO2 gain (mL·min ^{-1.} W ⁻¹)	10.4 ± 0.8	10.0 ± 0.5	10.6 ± 0.6
Phase II $\dot{V}O_2$ time delay (s)	6.1 ± 3.3	5.8 ± 2.8	6.4 ± 4.5
Phase II VO2 time constant (s)	34.7 ± 3.6	29.3 ± 4.2 *	25.3 ± 5.8 *
ĊO₂MRT (s)	40.8 ± 2.3	35.1 ± 3.4 *	31.7 ± 4.3 *
ḋO₂ slow component (mL)	98 ± 67	105 ± 60	165 ± 63
VO₂ slow component (%)	5.7 ± 3.5	5.8 ± 2.8	7.3 ± 3.2

significance values determined from Tukey's post-hoc test; * significantly different from 2017; * significantly different from 2018; MRT = mean response time

- Speeding of the VO₂ time constant during moderate- and heavy-intensity exercise
 - In contrast to untrained youth
- No changes of the VO₂ slow component during heavy-intensity exercise
 - In contrast to untrained youth
- VO₂ time constant (moderate-intensity) of \sim 11 to 14 s in May-2018 and Sep-2019
 - Extremly short steady-state within \sim 55 s
 - Values are similar with reported VO₂ time constants in highly trained adult endurance athletes
 - Suggesting a high potential for oxidative phosphorylation during moderate-intensity exercise

- Dissociation between the increase in VO_{2peak} and the decrease of the VO₂ time constant during moderate- and heavy-intensity exercise
 - Suggests different regulatory mechanisms
 - Sensitivity to different training sessions/programs different

Thank you for your attention

Thanks to my colleagues:

- Alfred Nimmerichter ٠
- **Bernhard Prinz** ٠
- Manfred Zöger ٠
- **Clemens Rumpl** ٠

University of Applied Sciences

