

The effect of physical and cognitive fatigue on mountain bike balance and agility performance

Dr Kim Buchholtz, PhD

Where did it all start?

Development of study

Why do riders fall?
?Skill
?Balance
?Agility
?Reaction time

How can we assess this?

Other factors affecting bicycle control ?Fatigue

ABSA Cape Epic case series (2019)

Fatigue as a factor affecting bicycle control

Models and theories

Methods

Quasi-experimental study with test-retest design

Dynamic bicycle specific balance tests

Bicycle specific agility assessment

Fatigue protocols

Physical fatigue protocol

5 X 1 minute sprints, 30 sec rest

Top up between tests: 2 x 1 min sprints

Cognitive fatigue protocol

30 minute incongruent Stroop task

Top up between tests: 2 min Stroop task

Results: Physical fatigue protocol

- 19 participants: 9 💍 10 Q
- Able to ride a mountain bike with cleats and clipless pedals
- Mean 9 yr MTB experience, 7.6 yr road experience
- Training 3.5 hr per week, mean distance/yr 5301 km

Cliff's d effect sizes were small to moderate (0.29-0.4)

Cognitive fatigue protocol

No significant changes in RPE or performance following cognitive fatigue

```
The Stroop Effect
                          blue
                   red
       blue
red
                   green
       red
                          red
green
                          blue
yellow blue
                   yellow
                          yellow
       yellow
                   red
                          red
                   green
       red
green
blue
       blue
                   blue
                          blue
yellow green
                          yellow
                   green
                          red
```


Statistical analyses: Responder analysis

DBBT1-4 and Agility test

- Meaningful difference: $\triangle mean \pm (SD \times 0.2)$
- Responders = $\triangle mean (SD \times 0.2)$
- Non-responders = $\triangle mean + (SD \times 0.2)$

Physical Fatigue Protocol

Cognitive Fatigue Protocol

Other variables

Pre- and post-fatigue

- Grip strength
- A Rate of perceived exertion
- △ Heart rate
- MTB experience (years)
- Annual cycling distance
- Descriptive characteristics

Discussion and Limitations

- Almost no significant differences pre- and post fatigue
- Additional validity of novel tests
- Post STROOP: subjective reporting of 'relief', 'can't wait to get back on the bike' etc, but not measured as mental-RPE
- Trained MTB: used to long periods of combined physical and cognitive fatigue fatigue protocols too short? not compound?
- Recommendation: vibrational fatigue? Prolonged periods of cycling?
- Further research needed!

Questions?

Thanks to supervisors: A/Prof Theresa Burgess and Prof Mike Lambert Expert panel input: A/Prof Jeroen Swart and Dr Mike Posthumus Research Assistants: Charlie Fethney and Lara Paul

@kimbphysio

kim.buchholtz@lunex.university.net