

Why CP as the MMSS standard?

- CP model: mathematical model of the hyperbolic power-time relationship
- Built from three or more maximal efforts
- Two parameters obtained: CP and W'
- Threshold between steady state and non-steady state intensities
- Discrete metabolic changes in VO₂ kinetics, PCr, muscle lactate, pH

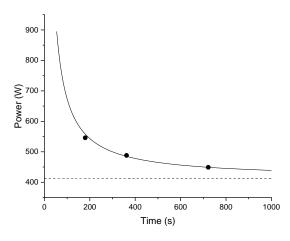


Figure 1 Hyperbolic relationship of time and power obtained from three time-trials (black dots) for CP estimation (dashed line)

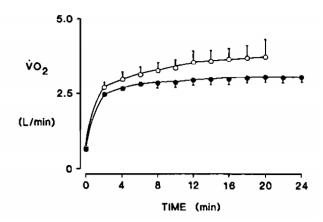


Figure 2 $\dot{V}O_2$ above CP (white circles) and at CP (black circles). From: Poole *et al.*, 1988.

Differences among CP models

- There are various CP models
- The models provide different CP estimates:

Table 1 CP estimates from different models.

From: Bergstrom et. al., 2014				
Model	CP (W)			
CP _{exp}	198 ± 41			
CP _{1/time}	184 ± 43			
CP _{linear}	181 ± 42			
CP _{2-hyp}	176 ± 40			
CP _{3-hyp}	174 ± 41			

Aim: finding which model is best for MMSS estimation

Methods

- N=11
- 1st visit CP testing (12-, 6- and 3-min TTs); 3 subsequent visits 30-min bouts at each CP estimate
- VO₂, lactate and RPE measurements
- Two-way repeated measures ANOVA and Bonferroni correction

Table 2 CP and standard error of the estimate expressed as %, W' and the standard error of the estimate expressed as %, and the total error of the model.

	CP (W)	CoV (%)	W' (kJ)	CoV (%)	Total error (%)
CP _{linear}	270 ± 64	1.6 ± 1.2	19.0 ± 1.9	10.11 ± 6.2	11.71 ± 7.4
CP _{1/time}	272 ± 66	2.1 ± 1.6	17.9 ± 1.7	8.4 ± 5.5	10.5 ± 7.1
CP _{2-hyp}	266 ± 65	1.2 ± 0.9	20.3 ± 2.1	9.5 ± 5.6	10.7 ± 6.5
CP _{3-hyp}	262 ± 63	1.0 ± 1.0	24.7 ± 2.3	7.2 ± 5.6	8.2 ± 6.6
CP _{exp}	303 ± 69	4.4 ± 1.2	-	-	-

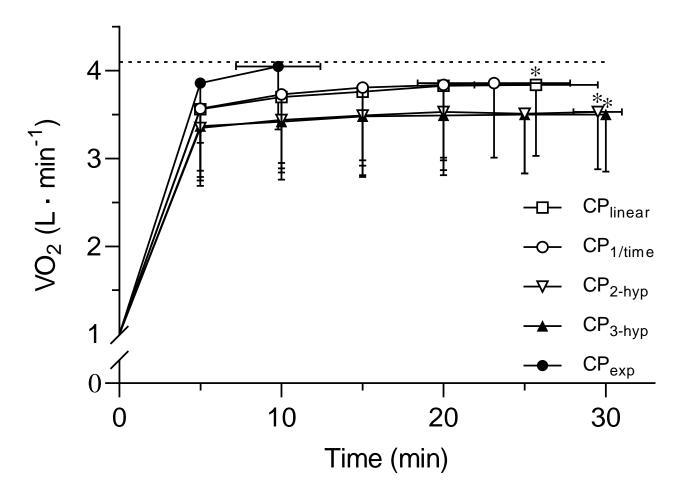


Figure 3 \dot{V} O₂ response to exercise at CP_{linear}, CP_{1/time}, CP_{2-hyp}, CP_{3-hyp}, and CP_{exp}. \dot{V} O₂ did not change significantly after stabilisation. *End-exercise \dot{V} O₂ significantly lower than \dot{V} O_{2peak}.

Table 3 Time for $\dot{V}O_2$ to stabilise, percentage of $\dot{V}O_{2peak}$ at which $\dot{V}O_2$ stabilises, slope of $\dot{V}O_2$ after stabilisation, and time to exhaustion (TTE) for each model.

	VO stabilisation	Doroontogo of	VO ₂ slope	
	VO ₂ stabilisation time (min)	Percentage of VO _{2peak} (%)	(mL · min ⁻¹ · min ⁻¹)	TTE (min)
CP _{linear}	14.1 ± 4.0	94 ± 5^{a}	0.25 ± 1.08	25.7 ± 3.8
CP _{1/time}	$\textbf{13.0} \pm \textbf{3.3}$	94 ± 6	0.34 ± 0.80	$23.1\pm4.7^{\text{b}}$
CP _{2-hyp}	11.7 ± 2.6	87 ± 4^{a}	1.07 ± 1.01	29.5 ± 1.5
CP _{3-hyp}	11.1 ± 4.2	86 ± 4^a	0.71 ± 1.55	30.0 ± 0.0
CP _{exp}	6.2 ± 1.8	98 ± 2	-0.17 ± 2.10	9.8 ± 2.6^{b}

 $[^]a$ Significantly lower than $\dot{V}O_{2peak}.$ b Significantly shorter than 30 minutes.

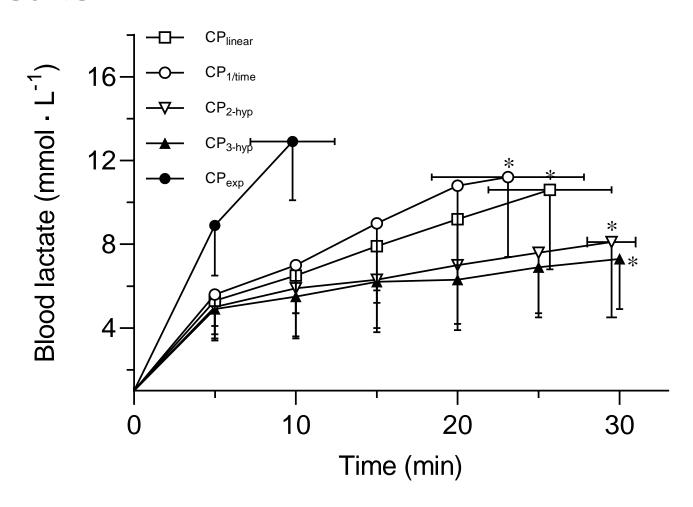


Figure 4 Blood lactate response to exercise at CP_{linear} , $CP_{1/time}$, CP_{2-hyp} , CP_{3-hyp} , and CP_{exp} . *Significant increase in lactate from minute 10 to end of exercise.

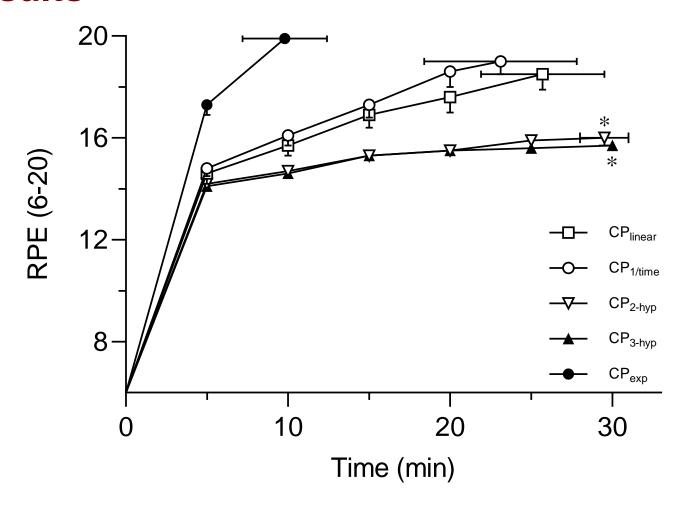


Figure 5 RPE when exercising at CP_{linear}, CP_{1/time}, CP_{2-hyp}, CP_{3-hyp}, and CP_{exp}. *Significantly lower than maximal perceived exertion (20).

Discussion

- RPE and VO₂ achieved a steady state at a submaximal level for CP_{2-hyp} and CP_{3-hyp}
- Lactate was non-steady for every model
- Lactate was not representative of perception nor VO₂
- There were individual variations in the adequacy of models
- CP_{2-hyp} and CP_{3-hyp} provide the best CP calculations for MMSS estimation

THANK YOU

