Why CP as the MMSS standard? - CP model: mathematical model of the hyperbolic power-time relationship - Built from three or more maximal efforts - Two parameters obtained: CP and W' - Threshold between steady state and non-steady state intensities - Discrete metabolic changes in VO₂ kinetics, PCr, muscle lactate, pH Figure 1 Hyperbolic relationship of time and power obtained from three time-trials (black dots) for CP estimation (dashed line) Figure 2 $\dot{V}O_2$ above CP (white circles) and at CP (black circles). From: Poole *et al.*, 1988. # Differences among CP models - There are various CP models - The models provide different CP estimates: Table 1 CP estimates from different models. | From: Bergstrom et. al., 2014 | | | | | |-------------------------------|----------|--|--|--| | Model | CP (W) | | | | | CP _{exp} | 198 ± 41 | | | | | CP _{1/time} | 184 ± 43 | | | | | CP _{linear} | 181 ± 42 | | | | | CP _{2-hyp} | 176 ± 40 | | | | | CP _{3-hyp} | 174 ± 41 | | | | Aim: finding which model is best for MMSS estimation #### **Methods** - N=11 - 1st visit CP testing (12-, 6- and 3-min TTs); 3 subsequent visits 30-min bouts at each CP estimate - VO₂, lactate and RPE measurements - Two-way repeated measures ANOVA and Bonferroni correction Table 2 CP and standard error of the estimate expressed as %, W' and the standard error of the estimate expressed as %, and the total error of the model. | | CP (W) | CoV (%) | W' (kJ) | CoV (%) | Total error (%) | |-----------------------------|--------------|---------------|----------------|---------------|-----------------| | CP _{linear} | 270 ± 64 | 1.6 ± 1.2 | 19.0 ± 1.9 | 10.11 ± 6.2 | 11.71 ± 7.4 | | CP _{1/time} | 272 ± 66 | 2.1 ± 1.6 | 17.9 ± 1.7 | 8.4 ± 5.5 | 10.5 ± 7.1 | | CP _{2-hyp} | 266 ± 65 | 1.2 ± 0.9 | 20.3 ± 2.1 | 9.5 ± 5.6 | 10.7 ± 6.5 | | CP _{3-hyp} | 262 ± 63 | 1.0 ± 1.0 | 24.7 ± 2.3 | 7.2 ± 5.6 | 8.2 ± 6.6 | | CP _{exp} | 303 ± 69 | 4.4 ± 1.2 | - | - | - | Figure 3 \dot{V} O₂ response to exercise at CP_{linear}, CP_{1/time}, CP_{2-hyp}, CP_{3-hyp}, and CP_{exp}. \dot{V} O₂ did not change significantly after stabilisation. *End-exercise \dot{V} O₂ significantly lower than \dot{V} O_{2peak}. Table 3 Time for $\dot{V}O_2$ to stabilise, percentage of $\dot{V}O_{2peak}$ at which $\dot{V}O_2$ stabilises, slope of $\dot{V}O_2$ after stabilisation, and time to exhaustion (TTE) for each model. | | VO stabilisation | Doroontogo of | VO ₂ slope | | |-----------------------------|--|---------------------------------------|---|-------------------------| | | VO ₂ stabilisation time (min) | Percentage of VO _{2peak} (%) | (mL · min ⁻¹ · min ⁻¹) | TTE (min) | | CP _{linear} | 14.1 ± 4.0 | 94 ± 5^{a} | 0.25 ± 1.08 | 25.7 ± 3.8 | | CP _{1/time} | $\textbf{13.0} \pm \textbf{3.3}$ | 94 ± 6 | 0.34 ± 0.80 | $23.1\pm4.7^{\text{b}}$ | | CP _{2-hyp} | 11.7 ± 2.6 | 87 ± 4^{a} | 1.07 ± 1.01 | 29.5 ± 1.5 | | CP _{3-hyp} | 11.1 ± 4.2 | 86 ± 4^a | 0.71 ± 1.55 | 30.0 ± 0.0 | | CP _{exp} | 6.2 ± 1.8 | 98 ± 2 | -0.17 ± 2.10 | 9.8 ± 2.6^{b} | $[^]a$ Significantly lower than $\dot{V}O_{2peak}.$ b Significantly shorter than 30 minutes. Figure 4 Blood lactate response to exercise at CP_{linear} , $CP_{1/time}$, CP_{2-hyp} , CP_{3-hyp} , and CP_{exp} . *Significant increase in lactate from minute 10 to end of exercise. Figure 5 RPE when exercising at CP_{linear}, CP_{1/time}, CP_{2-hyp}, CP_{3-hyp}, and CP_{exp}. *Significantly lower than maximal perceived exertion (20). #### **Discussion** - RPE and VO₂ achieved a steady state at a submaximal level for CP_{2-hyp} and CP_{3-hyp} - Lactate was non-steady for every model - Lactate was not representative of perception nor VO₂ - There were individual variations in the adequacy of models - CP_{2-hyp} and CP_{3-hyp} provide the best CP calculations for MMSS estimation # THANK YOU