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Abstract 

In this paper we introduce a workflow for automatic lap detection in Global Positioning 

System (GPS) workout files followed by subdivision in distance-based sectors. First, Discrete 

Fourier Transform (DFT) power spectrum analysis is used to detect the number of completed 

laps in the athletes’ workout files. Subsequently, when the number of completed laps is 

available, a geospatial neighborhood based search procedure detects the lap split points in the 

workout file. Combination of the number of laps and the consecutive lap boundaries enables 

sector based geospatial alignment. This is achieved by a mechanism, aligning the base course 

with laps of several workouts, based on a combination of cumulative lap distance and 

geospatial distance between sector start- and end-point. Geospatial alignment allows 

straightforward sector based performance comparison of the recorded workouts of circular 

mass-start sports events. As mentioned, workout laps are mapped on a base course, which is 

usually a hand-drawn GPS trace, or a GPS file offered by the race organizers. The base 

course is further subdivided in a number of fixed-length sectors, allowing a more detailed 

comparison between a set of laps. Course sector start- and endpoints are matched with the 

closest points in the participants’ laps extracted from their uploaded workout files. As these 

matching points are timestamped, the elapsed time between both points serves as a 

completion time of the sector in question. The proposed workflow enables inter- and intra-

athlete lap comparison and is providing additional insights such as: an overview of the 

sectors where the biggest differences were made; the n hardest sectors to complete based on 

lap time or the engagement score of a sector based on the average and the standard deviation 

of duration.   
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Introduction 

The current advancements in development and deployment of Global Positioning System 

(GPS) technology has made GPS receivers widely available and affordable (Kumar et al., 

2002).  

 

GPS aided technology (such as smartphones and wearables) are widely used by sports 

enthusiasts to track and evaluate their progress. Modern GPS head units and watches are 

nowadays capable of recording time stamped geographical data (latitude, longitude, 

elevation, distance) combined with additional sensor data (heart rate, power, cadence and 

temperature) and produce a workout file containing the recorded geographical and sensor 

data. Interpretation and evaluation of these files is usually performed by athletes or coaches. 

Visualization and interpretation are facilitated by one of the many software packages that 

calculate performance metrics and map or graph the data from GPS workout files. These 

tools are usually centred around coaching and tracking the fitness progress of an athlete with 

aids such as (semi-)automated workout planning and automated analysis of executed 

workouts.  

 

Most of the aforementioned software packages are mainly focused around evaluation of 

sensor data. GPS data is commonly used with the sole purpose of visually liking the sensor 

data with the location where it was recorded. Only a few tools are focussed around direct 

geospatial analysis of workout files. Strava, an online app that tries to build a social network 

of like minded sports enthusiasts, is one of the software packages that offers thorough 

geospatial analysis of uploaded GPS logs from fitness devices. Quite a while ago, they 

introduced the concept of timed GPS segments, which allows users to compete on predefined 

road segments without the need to physically take part in a planned race or group activity.  
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To the best of our knowledge, the utilised algorithms to search and match segments in GPS 

are entirely proprietary. This makes athletes dependent on the features and comparisons 

offered by the companies of the segment matchers. In this paper, we want to introduce an 

open and high-performing way to geographically analyze circular GPS data gathered on mass 

start events such as cyclocross races or the final laps of a road world championship. In the 

remainder of this paper, we propose a workflow to automatically detect the number of laps, 

followed by a segmentation of the file into lap segments, concluded by the alignment of the 

laps, allowing inter- and intra-athlete lap time comparison. We verify the introduced 

techniques on GPS files originating from uploaded files of competitive cyclocross races.  

 

Methods 

As already discussed in the previous section, we’ll try to make a contribution in the domain 

of segment matching in large geospatially annotated datasets. The process of lap extraction 

and the subsequent matching can be subdivided into three different intermediate steps.  

 

The first step consists of the extraction and preprocessing of the geospatially data, which is 

usually stored in structured file formats such as Flexible and Interoperable data Transfer 

(fit),  Training Center XML (tcx) or GPs eXchange format (gpx). To facilitate both inter- and 

intra-athlete comparison we resampled the timestamped geospatial records to a sampling 

interval of 1 Hz as it simplifies the subsequent processing steps of the lap matching process. 

As processing libraries do exist in any of the popular programming languages, the first step 

of our matching process is a rather straightforward job. The upsampling is achieved by linear 

interpolation of both the geospatial coordinates (Equation 1) and the recorded sensor data. 

Downsampling isn’t required as the maximum sampling frequency of the commercially 
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available GPS head units and watches is capped at 1 Hz. Although it might not be ideal for 

racing or exercising, the utilization of standalone GPS receivers, sampling at 10 Hz, might 

potentially deliver more accurate results, as they were proven to offer better insights in 

instantaneous speed differences (Gløersen et al., 2018). 

𝑡  𝜖 [0, 𝑇], 𝑝𝑡 = (𝑙𝑎𝑡𝑡 , 𝑙𝑜𝑛𝑡) 

𝒕𝒉𝒆𝒏: 𝑝𝑖  ∈ [𝑝1, 𝑝2]  ⟺  𝑝𝑖 +
𝑡𝑖 − 𝑡1

𝑡2 − 𝑡1
(𝑝2 − 𝑝1) 

Equation 1 : the interpolation of the latitude (lat) and longitude (lon) for a point pi between 

timestamped geospatial points  p1 and p2 

In the next step of the process the number of laps was derived from the time stamped (1 Hz) 

coordinates of the circular GPS workout files. As opposed to the first step this procedure 

involved less obvious techniques. As we are trying to detect circular laps, having the same 

start and end point, a large number of geospatial coordinates will recur in a predictable way. 

Figure 1 shows the recurrence of longitude coordinates recorded during a Belgian cyclocross 

race. This is a very interesting finding as this allows us to reduce three-dimensional GPS data 

(latitude, longitude and timestamp) to a two-dimensional (either latitude or longitude and 

timestamps) data structure. Within this regard, GPS data is very similar to an audio signal 

which is physically described as a disruption of local air pressure at frequencies within the 

audible range. The challenge within audio processing is often to decompose an audio signal. 

Audio is often a combination of multiple harmonic sound waves. In audio processing 

Discrete Fourier Analysis (DFT) is a technique to detect the harmonic content of such 

synthesized sound waves. In brief, DFT is a technique which allows to find the “repetivity” 

within a temporal signal. As our timestamped GPS coordinates are temporal and also 

recurrable over time, Fourier analysis can indicate the number of laps a rider completed of a 

certain course. In Figure 2, the power spectrum is shown for the longitude coordinates of 

Figure 1. With the help of Fourier analysis the longitude signal was decomposed into a set of 

sinusoids of different frequencies. Consequently, the power spectral density graph (as shown 
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in Figure 2) showed how the power of the total signal, which is the variation in longitude in 

our example, is distributed across the detected sinusoids. The frequency with the highest 

power is the most likely candidate for the number of laps. Figure 2 illustrates that according 

to the power spectrum Fourier analysis that the frequency of 10 (laps) is the most powerful 

across the spectrum, which is confirmed by a longitude pattern that is repeating ten times 

over elapsed time in Figure 1. 

 

Figure 1 : Longitude plotted over elapsed time, with ten repetitions of the same longitude pattern. 

 

Figure 2 : Power spectrum Fourier analysis for the longitudes of Figure 1 : Longitude plotted over 

elapsed time, with ten repetitions of the same longitude pattern.  

Now that we have a number of geospatially repeating patterns from our GPS coordinates over 

time we can find the exact lap boundaries. A lap boundary is defined as the point on the 

course where the previous lap is completed and a new lap is started. For the exact starting 

point the point at which the repetitive pattern is starting has been chosen, which in cycling 

races is often the start- and finish-area.   

With these aspects in regard, the lap boundaries can be calculated by investigating all the 

coordinates of the athlete’s workout file and look for a point on the course that is recurring at 

a similar frequency as the number of laps. This is achieved by looking at the start of the GPS 
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file, provided a small offset to take into account the fact that most athletes start their 

recording devices slightly before the start of a race, and find a coordinates which is 

reoccuring the next lap. To find this subsequent passage through the start point the algorithm 

searches for the closest point around the ideal lap point (ptcalc, Eq. 2). This point is defined by 

starting point plus total workout time (T, Eq. 2) divided by the number of laps (n, Eq. 2) 

detected by the DFT analysis. The algorithm looks within an interval around the ideal lap 

point. This interval was defined at fifteen percent of the total workout time plus or minus the 

timestamp of the ideal lap point. This optimization greatly reduces the total number of 

comparisons. Equation 2 summarizes the algorithm to extract the lap points from the workout 

file when it’s provided by the number of completed laps. 

𝑇 = 𝑇𝑡𝑜𝑡𝑎𝑙,𝑤𝑜𝑟𝑘𝑜𝑢𝑡 − 𝑜𝑓𝑓𝑠𝑒𝑡𝑠𝑡𝑎𝑟𝑡+𝑒𝑛𝑑 

𝑝𝑡𝑐𝑎𝑙𝑐,𝑖 = 𝑝𝑡𝑎𝑐𝑡,𝑖−1 +
1

𝑛
∙ 𝑇 

𝑝𝑡𝑎𝑐𝑡,𝑖 = min[𝑑𝑖𝑠𝑡(𝑝𝑡𝑎𝑐𝑡,𝑖, 𝑝𝑡𝑗)]   ∀ 𝑗 ∈ [𝑝𝑡𝑐𝑎𝑙𝑐,𝑖 −
15

100
∙ 𝑇; 𝑝𝑡𝑐𝑎𝑙𝑐,𝑖 +

15

100
∙ 𝑇] 

Equation 2 : the calculation of the next lap split point ptact , if provided with the previous lap point 

ptact,i-1, workout time T and a DTW-based calculation of number of laps n. 

To make sure that the first calculated next point is close enough to the course start point an 

accuracy radius was set. If the next point isn’t within the radius of the candidate lap point we 

move the index of the starting point ahead and repeat the process described in Eq. 2 with the 

new start point ptact set to ptstart, i+1.  

𝒊𝒇 𝑑𝑖𝑠𝑡(𝑝𝑡
𝑠𝑡𝑎𝑟𝑡,𝑖

, 𝑝𝑡
𝑛𝑒𝑥𝑡

) > 𝑟𝑎𝑑𝑖𝑢𝑠 → 𝑝𝑡
𝑠𝑡𝑎𝑟𝑡,𝑖

= 𝑝𝑡
𝑠𝑡𝑎𝑟𝑡,𝑖+1

 

Equation 3 : Start point quality control process: ensures that the starting point for the lapping 

procedure is close enough to the detected next point. 

Now the number of laps and their exact lap boundaries were extracted from the workout files 

we switch to the lap alignment procedure that matches the coordinates of these laps (inter- 

and intra-workout). The alignment process is achieved by further subdivision of the laps in 

sectors, which are fixed parts of the course. All the sectors of the course are having the same 
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distance  (i.e. the sector length).  Alignment of the detected laps with the sectors of a hand 

drawn base course is achieved based on start- and end-point of the sectors. External 

circumstances (e.g. deep forest, bad weather, …) which are resulting in an often rather 

inaccurate recorded workout are imposing the need to introduce a twofold procedure to get 

the best possible sector point alignment between an often inaccurate workout file and a more 

precise hand drawn GPS course. The first step iterates over all the sector split points and 

matches course sector split points to lap split points entirely based on elapsed distance in both 

paths (see Pseudocode 1). 

lap_index ← 0     

Sector_lap_splits ← []  

for sector_index, elapsed_distance in course_sectors 

while elapsed_lap_distance[lap_index] < elapsed_distance 

          lap_index ← lap_index + 1 

    End while  

sector_lap_splits.push(lap_index) 

End for  

Pseudocode 1: First iteration to match sector split points of course and lap coordinates based purely 

based on elapsed distance. 

This first iteration which is max(O(nsectors), O( nlap_points) ) produces a set of points which are 

possible lap sector splits in the workout files. As mentioned, the variable accuracy of GPS 

data,  necessitates an additional iteration which aims to further fine-tune the splits in the lap 

data. This iteration mainly uses a weighted sum of both elapsed distance difference and 

haversine distance between course and lap sector split points (Eq. 4). The search space to find 

the best matching point is limited by the points of the lap which are within an interval limited 

by the previous and next sector lap split point (calculated in the first iteration, pseudocode 1). 

This extra iteration is O(nlap_points) which makes this two step lap matching algorithm O(nlap_points). 

𝑑𝑠𝑒𝑐𝑡𝑜𝑟𝑗, 𝑝𝑡𝑖
= min √(𝑠𝑒𝑐𝑡𝑜𝑟𝑙𝑒𝑛𝑔𝑡ℎ ∙ 𝑎𝑏𝑠 [1 −

𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑐𝑜𝑢𝑟𝑠𝑒,𝑗

𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑙𝑎𝑝,𝑖
])

2

+ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝𝑡𝑙𝑎𝑝,𝑖, 𝑝𝑡𝑠𝑒𝑐𝑡𝑜𝑟,𝑗 )
2
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∀ 𝑖 ∈ [𝑝𝑡𝑠𝑒𝑐𝑡𝑜𝑟,𝑗−1 +
1

4
∙ 𝑛 , 𝑝𝑡𝑠𝑒𝑐𝑡𝑜𝑟,𝑗+1 −

1

4
∙ 𝑛] 

𝑛 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 [𝑝𝑡𝑠𝑒𝑐𝑡𝑜𝑟,𝑗−1, 𝑝𝑡𝑠𝑒𝑐𝑡𝑜𝑟,𝑗+1] 

Equation 4 : Second iteration which takes closest lap point i to the course point at sector at index j 

(ptsector, j is the split point of sector j in the lap points) based on a distance (𝑑𝑠𝑒𝑐𝑡𝑜𝑟𝑗, 𝑝𝑡𝑖
) weighting 

elapsed distance and haversine distance between course and laps sector point 

The last and rather straightforward step is to get the elapsed lap sector times based on the 

points in the lap aligned with the sector split points. The time required to complete a sector of 

the course is calculated by the entire lap time needed to reach the point at the end of that 

sector minus the time to reach the starting point of that sector, which is also the end of the 

previous sector. 

 

Results 

The proposed methodology to extract the number of laps, extract separate lap data from the 

entire workout file and the matching of fixed-distance lap sectors with those of the base 

course are ultimately offering sector times for all the available activity files of participating 

athletes on a circular course. The travelled distance-based sector times are allowing a direct 

comparison between sector times, both intra- and inter-athlete.  The former, as researched by 

Hopkins et Al. (2001), can show interesting insights in the consistency of an athlete over the 

duration of a race. In sports or sport disciplines which involve a technical component, sector 

times are considerably influenced by obstacles or technically demanding zones of the course. 

The calculated sector times of an athlete across his or her completed laps of the course can be 

further examined based on median, mean or standard deviation of the completion times of a 

sector. This type of examination is illustrated in Figure 3. The race was a cyclocross round of 

a pro general classification series in the U23 category in Belgium. For those not familiar with 

cyclocross, this is basically a race over repeating laps consisting of a mixture of well-rideable 

and technical, muddy or steep sector. The course is tackled with slightly modified road 
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bicycles (wider and knobby tires and a more robust and higher frame geometry).  The rider in 

the example completed a total of 6 laps on a roughly 9 minute during lap. The fifth lap (in 

purple) was plotted against the area between the first- and third-quartile (Q1 & Q3) sector 

values for the rider’s lap times. The more narrow the surface between Q1 and Q3, the more 

consistent our rider was at a given sector. The rider finished well in the top ten of the race, 

which is fortifying Hopkins’ (2001) statement that the more consistent the athletes’ sector 

times the higher their chances to ride a good race resulting in a good end ranking. The rider’s 

lap interquartile-range distances of sector times for the rider in Fig. 3 are well between a 

couple of seconds. Furthermore, the graph is also showing that at sector 15 and 29 the rider is 

riding remarkably slower as usual. We can only guess for the exact reason for this relatively 

slower sector times, but a non-exclusive list of possible factors are: the fatigue building up 

during the is race impacting the performance, weather conditions changed during the race or 

maybe due to a technical mistake of the rider. Extra info for our example is that both sectors 

were highly technical and became more muddy during the race as ruts formed and a rain 

shower started in the second half of the race. 

 

Figure 3 : Visual analysis of sector times for lap 5 (purple line) of an U23 rider participating in an 

elite cyclocross race compared with Q1-Q3 range of sector times of the athlete. 

The previous case study investigated the intra-athlete analytical possibilities of our suggested 

mechanism. Another interesting investigation possibility is the inter-athlete analysis for a 

certain event. With the help of some first order statistics such as median, and quartiles we can 

already get a basic understanding of the faster and slower sector of our course. Figure 4 
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shows a plot of these statistical measurements for the same muddy course as in the intra-

athlete case study. For this example we used a total of 9 available race workout files 

originating from three different categories (U23, Women Elite, Men Elite). Each category has 

a different race duration (50 minutes, 45 minutes and 60 minutes respectively) providing us 

with 53 time measurements for each of the fixed-length sectors of the course. In the graph of 

Fig. 4 we can clearly see 3 distinctive peaks. After further examination, two out of the three 

correspond with sectors in which the riders had to dismount their bikes and run up a steep and 

muddy hill. The other peak was an off-camber muddy sector on which a small mistake could 

also result into a forced dismount of the rider. Furthermore, we could also observe larger 

variability (light blue area between Q1 and Q3, Fig. 4) at the more technical sectors of the 

course. A pro cyclocross course often starts and ends at a paved sector of road. This pattern 

could also be recognized in the graph: the start and end sectors have consistently lower sector 

times as those in the middle. 

 

Figure 4 : Variability in sector times of the same muddy course as in Fig. 2 & 3 of various athletes 

(9) of different categories (3). The more difficult the sector (higher sector) time, the more variability. 

As illustrated,  sector times and their first order statistics are offering interesting insights into 

the track layout and might perhaps even reveal some of the track conditions. This arises the 

possibility to propose a sector engagement scoring that could potentially find it benefits in 

various use cases. Broadcasters of the race could for instance use this information to position 

extra equipment at the most engaging sectors or the race organizers could use engagement 

scorings of previous editions or of other races to build a highly engaging course. In Equation 
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5, we propose such a scoring mechanism that is solely relying on the statistics based on the 

available sector times.  

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝐥𝐧 (
𝑚𝑒𝑑𝑖

𝑚𝑎𝑥 − 𝑚𝑖𝑛
) ∙ 𝑚𝑒𝑑𝑖 + (1 −

𝑚𝑒𝑑𝑖

𝑚𝑎𝑥 − 𝑚𝑖𝑛
) ∙ 𝑚𝑒𝑑̅̅ ̅̅ ̅̅  

𝒘𝒊𝒕𝒉:        𝑚𝑒𝑑𝑖  ← 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑡ℎ𝑙𝑒𝑡𝑒𝑠′ 𝑠𝑒𝑐𝑡𝑜𝑟 𝑡𝑖𝑚𝑒𝑠 𝑓𝑜𝑟 𝑠𝑒𝑐𝑡𝑜𝑟 𝑖 

                               𝑚𝑎𝑥 ← 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟 𝑡𝑖𝑚𝑒𝑠 

                              𝑚𝑖𝑛 ← 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟 𝑡𝑖𝑚𝑒𝑠 

                           𝑚𝑒𝑑̅̅ ̅̅ ̅̅  ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑚𝑒𝑑𝑖𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑜𝑟 𝑡𝑖𝑚𝑒𝑠 

Equation 5 : Calculation of a sector engagement scoring based weighting of a sector’s median value, 

overall maximum and minimum sector time, median of the median sector values. 

The engagement scoring for our muddy course of the previous examples could be observed in 

Figure 5. It is obvious that the running and off-camber sectors which we discovered in Figure 

4 are also ranked as the most engaging by the mechanism. Additionally, the aforementioned 

start finish area is also ranked as less engaging in comparison with the off-road sectors.  

 

Figure 5 : Suggested engagement ranking (based on Eq. 5 and rescaled from 1 to 10) of the various 

sectors of the muddy course of the previous examples (Fig. 2-4). 

 

Figure 6 : Outlier sector times with GPS traces of the sector in question which is illustrating that 

GPS accuracy is very low around that area. 
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Finally and as suggested by Hurst et al. (2016), GPS data can also be used to characterize the 

course and course conditions. As Figure 6 is demonstrating, median sector times can give 

additional insights in the type of course. In downhill racing this principle was used to 

compare different downhill tracks in the same bike park. For cyclocross this method can also 

be used, but in cyclocross it is perhaps more interesting to compare multiple tracks with 

different weather conditions. Figure 6 is demonstrating this principle, the left graph is 

showing the sector speed distribution of a muddy, hilly race. The right graph is an example of 

a fast and dry course from the beginning of the Belgian cyclocross season. The first graph is 

clearly and consistently showing slower sector speeds.  

 

Discussion 

The mechanism and its applications are a good starting point for further development of a lap 

comparison toolkit for circular mass-start events. Combination of the sector times with 

additional metadata about the sectors of the course could provide more insights in the course 

and course circumstances. A big step towards this goal would be the registration of some of 

the track characteristics such as track width, surface type, surface condition and possible 

obstacles on a fixed-length sector level. Combination of sector times and the additional 

information about the sectors in question might even allow direct comparison between 

sectors of different courses or editions of a race. This would enable similarity based matching 

of sectors across different courses when a dataset consisting of sector times and its 

accompanying metadata is provided. 

 

Likewise, and provided that sufficient workouts from the same category (i.e. U23, Women 

Elite, Men Elite, …) are available we could provide a performance ranking mechanism, 
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similar to the engagement scoring mechanism which is giving a rider a score for each sector 

based on his ability on that specific sector compared to the other riders in his/her category. 

 

A final future consideration is focussed around the fact we are dealing with real-life GPS data 

and that it is sometimes challenging to provide accurate insights when the provided data isn’t 

accurate. Acosta and Toloza (2012) mention that the GPS accuracy is between 10 and 15 

meters for 95% of the time. As a matter of fact, this is already a considerable margin, but 

combined with the typical characteristics of cyclocross courses this can sometimes offer 

impactful accuracy issues. Cyclocross in particular is a sport in which riders have to ride 

through variable terrain, with courses that are often laid out in a very condensed area, 

containing a lot of tight turns. All of the above is resulting in GPS reception and accuracy 

which is not always as good as it could or should be for accurate position tracking. These 

circumstances often result in a relatively low amount of logged coordinates around that area 

and ultimately cause the mechanism to provide sector times which are rather inaccurate. 

From the other side, in the future this can also serve as an inaccurate sector sample detection 

mechanism, as the calculated sector times often fall outside the human possibilities or are 

well outside the range of the other durations for that sector. 
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Figure 7 : Outlier sector times from GPS traces. The overlaid map containing the sector traces of the 

outliers is illustrating that GPS accuracy was very low around that area. 

Practical applications 

The presented methodology in this paper is directly applicable in endurance sports in which 

athletes are using a GPS-enabled recording device. The test results discussed in this paper 

were conducted on a collection of Belgian cyclocross races of different categories. 

Cyclocross is a cycling discipline that is very suited for our approach as riders repeat the 

same lap between six and ten times (depending on the exact course distance).  

The ability to isolate challenging and engaging sectors is also promising for other disciplines 

and even other types of endurance sports. Currently, we are extending the proposed GPS-

based sector extraction methodology to also support non-circular road racing. We already 

performed some initial tests in which we successfully extracted and analyzed riders’ sector 

completion times of some of the famous Belgian cobbled climbs. Analysis of climbs or 

cobbled sectors during road races has the added challenge of variable sector lengths. This 

extra challenge requires an alternative engagement ranking algorithm to allow comparison of 

variable length sectors based on the competitors’ sector times. Figure 8 shows the ten most 
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interesting sectors of the 2019 Tour of Flanders. In hindsight, the final race outcome was 

decided by the combination of the well-known duo of the “Oude Kwaremont” (third passage) 

and the “Paterberg” (second passage), which is also observable in our engagement rankings 

in Fig. 8 as they are respectively the fourth most and the most engaging sectors. 

 

Figure 8 : Sector engagement score based on riders' files of the 2019 Tour of Flanders 

Lastly, collection and linkage of other metadata about the riders (e.g. age, nationality, weight 

or height) or the sectors themselves (e.g. wind and weather circumstances or average 

gradient) could further extend both the scope of application and the abilities of our ranking 

mechanism. For road races, factoring in the wind direction and speed into the absolute sector 

times could provide additional insights into the engagement of a sector on a specific day 

(with given weather circumstances). Likewise, for technical, off-road disciplines such as 

cross-country or downhill mountain biking, extra info about the track (e.g. type of surface, 

condition of the surface or amount of incident sunlight) combined with the sector timings of 

the practice runs could potentially reveal the sectors on which the difference will be made on 

race day.  

Conclusion 
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In this paper we presented a mechanism to extract the number of laps and split the workout in 

different laps. The extracted laps were further subdivided in fixed length sectors which we 

used, based on the lap data of different athletes and the timestamps of the matching sector 

split points,  to calculate sector completion times. The availability of sector times per athlete 

per lap allows both inter and intra-athlete comparison and was found to be beneficial for 

engagement scoring, checking a rider’s consistency during the race and even provide a basic 

idea of the course type and/or conditions. 
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