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Abstract: There are numerous sources of computed pacing strategies that optimize the power output over 

a cycling activity using mathematical models. In this work, we analyze and compare three computed 

optimal pacing strategies with each other and compare them to the recorded pacings of approximately 

12,000 empirical rides on a popular uphill road segment in Adelaide, Australia. We found that the 

computed strategies differ significantly, and that the majority of the riders could have benefited from 

adapting to a computed strategy. 
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1. Introduction 

In road cycling and generally in 

endurance sports, the way an athlete 

distributes the available energy resources 

over the course of an activity is known as the 

pacing strategy. The right pacing strategy can 

be the crucial factor to win a race. There have 

been numerous studies to investigate pacing 

strategies. Swain (1997) and Atkinson et al. 

(2007) examined in a simulation how an 

athlete’s power output needs to be varied to 

cope with wind and hilly roads to achieve a 

better result with the same average power 

output. Cangley et al. (2010) confirmed these 

simulated results in a field experiment. In all 

three studies the power was selected using a 

trial-and-error approach but they agreed that 

varying power output can be beneficial in 

changing environmental conditions. 

Subsequently, there were several studies 

that tried to solve the problem of finding the 

optimal pacing strategy more systematically. 

The first mathematical approach for 

optimizing the power distribution was done 

by Gordon (2005) applying a model based on 

air, rolling, and grade resistance. An 

extension of Gordons work was done by 

Dahmen (2012) and Dahmen et al. (2012). 

They replaced the physical model with the 

model developed by Martin et al. (1998) and 

used an extension of the critical power model 

by Morton (1996). Furthermore, they 

improved the computation of these 

mathematical optimal strategies by defining 

an optimal control problem. The goal was to 

find a power distribution that minimizes the 

time needed for an activity with respect to the 

physiological model used. Similar 

approaches were investigated by Fayazi et al. 

(2013), Sundström et al. (2014), Dahmen 

(2016), Sundström and Bäckström (2017) and 

Wolf et al. (2019). 

Another source of pacing strategies are 

online platforms where athletes can share 

and compare their rides. These platforms 

were emerging over the last years and offer 

the possibility to compute, download and use 

optimal solutions for pacing on the road, e.g., 

using a Garmin cycling computer. Ryan 

Cooper, the founder of the platform 
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BestBikeSplit[i], also developed 

mathematical models to compute pacing 

strategies starting out during the Tour de 

France in 2013 when he predicted the time 

trial times for some athletes (Sexty 2017).   

In practice, road cyclists and other 

endurance athletes apply different types of 

pacing strategies. Abbiss and Laursen (2008) 

presented six common pacing profiles in 

their literature review paper, namely 

positive, negative, even, all-out, parabolic 

shaped, and variable pacing. These pacing 

profiles have been observed in numerous 

field and laboratory studies. In 2019, we 

collected records of 12,202 maximum effort 

rides from Norton Summit (Adelaide, 

Australia), which is a popular 5.54 km long 

uphill road segment with a climb of 270.3 m 

(Saupe et al. 2019). It was confirmed that the 

pacing strategies observed in the literature 

also showed up in the rides on the Norton 

Summit segment, except for the all-out 

strategy. 

A question that remained open is to 

what extent optimal pacing strategies would 

be able to reduce the total riding time of 

experienced cyclists at different personal 

performance levels. In the following, we 

compare optimal, computed strategies from 

our Powerbike project as described by Wolf 

(2019) and from the online platforms 

BestBikeSplit and Strava with the empirical 

ride data. This approach differs from other 

similar analyses since we compare the 

computed strategies to a huge amount of 

empirical data unlike other studies that 

encompass few participants or just 

simulations. Such a comparison presents 

several major challenges: (1) Only a small 

number of cyclists have power meters 

installed on their bikes, and, moreover, the 

power measurements produced by these 

devices are not comparable because of 

differences in accuracy in the wide range of 

devices used. (2) Thus, one has to resort the 

mathematical models to estimate power. 

However, this requires many rider specific 

parameters, in particular the system mass 

besides friction coefficients, all of which are 

unknown. (3) For a fair comparison when 

applying a mathematical model, we have to 

make use of a unique, single height profile of 

the course, but the recorded height profiles in 

the data records differ by large amounts. (4) 

Last, but not least, the data records contain 

sequences of location, distance, and speed, 

however, contaminated by noise and 

sampled nonuniformly at different places. 

Therefore, the data must be denoised and 

uniformly resampled. 

2. Materials and Methods 

We considered computed optimal 

strategies for the Norton Summit segment 

from BestBikeSplit, Powerbike, and Strava. 

The pacing strategies were obtained for goal 

times of 11, 12, …, 23, 24 minutes, 

corresponding to finish times achieved by 

best efforts of hobby riders up to professional 

athletes on the Tour Down Under. We 

compared the empirical and computed 

strategies for fixed average speed and 

average power. 

We preprocessed the computed 

strategies in the same way as the 12,202 

empirical data records were treated in Saupe 

et al. (2019). First, distances were adjusted to 

a length of 5,545.54 m and secondly, the road 

gradients were derived from the height 

profiles based on the altitude measurements 

of several thousands of empirical rides. Then 

speed was computed from time and distance 

pairs using central differences. To smooth the 

speed, we applied a Gaussian filter with a 

standard deviation of σ = 10 s. Finally, we 

ensured that the speed is consistent with total 

distance and the reported finish time by 

applying a small offset. 

To estimate power for the collected data, 

we used the physical model introduced by 

Martin et al. (1998). For this purpose, we 

configured a virtual standard rider, applying 
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the same parameters as in Dahmen et al. 

(2011), except for the masses 

Figure 1. Computed optimal strategies from Strava, Powerbike and BestBikeSplit for a goal time of 12 minutes.

of rider and bike. We determined the sum of 

the masses of the standard rider and the bike, 

based on the minimization of the error 

between the results of the physical model and 

the power measurements collected in many 

of the empirical rides. Finally, for each 

recorded ride we computed the average 

power and the average speed. 

3. Results 

Figure 1 shows the optimal pacing 

strategies from Strava, Powerbike, and 

BestBikeSplit for a finish time of 12 minutes. 

Despite having the same finish time and 

nearly the same average power, the power 

distribution differs. While the power 

distribution of Powerbike and BestBikeSplit 

strategies is similar, Strava follows a different 

approach with higher maximum power, up 

to more than 600 W for several hundred 

meters. 

In Table 1, there is an overview of the 

correlations of pairs of computed strategies, 

averaged over all goal times.  Furthermore, it 

shows average correlations between the 

computed strategies and the empirical rides. 

To compute these values, we selected the  20 

empirical rides which were closest to each 

goal time, computed the average correlation 

coefficient of these 20 rides with the 

respective strategy and again computed the 

average over all goal times. The strategies 

suggested by BestBikeSplit and Powerbike 

behave rather similarly for all goal times with 

an average correlation of 0.88. The 

correlations with Strava’s strategies are 

noticeably smaller. Also, the correlations of 

the empirical rides with BestBikeSplit (0.7) 

and Powerbike (0.71) are higher than with 

Strava (0.49).  

To point out the difference between 

computed and empirical strategies in terms 

of average power for different goal times, 

Figure 2 shows the differences in average 

power between the power corresponding to 

the data and the computed strategy with the 

lowest average power. In Figure 2, this 

computed strategy with minimal power 

requirement is given as the baseline at zero 

offset. Up to an average speed of 26.27 km/h 

the Powerbike strategy has the lowest power 

demand. For all higher considered average 

speeds, the BestBikeSplit strategy has the 
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lowest power demand. Goal times are 

converted to average speed in Figure 2. 

The average differences in power 

between the three computed strategies are 

small, approximately 0.36 W. To analyze how 

close the riders paced to the optimal 

strategies, we divided them in two groups: 

riders with an average speed less or equal to 

29 km/h (99.78%) and riders with an average 

speed greater than 29 km/h. A large fraction 

of the riders of the first group (71%) yielded 

Figure 2. Scatter plot of the differences in average power to the computed strategy with the lowest average power 

of the empirical rides.

a higher average power (0.70 W ± 0.72 W) 

than the optimal strategies. The remaining 

portion of this group (29%) yielded an 

average power below the baseline (-0.27 W ± 

0.27 W).  While this holds for the majority of 

the riders, the fastest riders paced closer to 

the computed strategies. Their power only 

deviated by 0.52 W ± 0.93 W from the 

computed strategy with the lowest power 

demand. 

Table 1. Average correlations and standard 

deviations of the computed strategies and 

empirical rides over all goal times. 

 BestBikeSplit Powerbike Strava 

empirical 
rides 

0.70 
 ± 0.03 

0.71 
 ±  0.03 

0.40 
 ± 0.05 

Strava 
0.59 

 ± 0.05 
0.60 

 ± 0.05 
 

Powerbike 
0.88 

 ± 0.02 
  

 

4. Discussion 

While the average power demand for 

the three optimal pacing strategies differ by 

only little, the power distributions of Strava’s 

strategies propose much higher variations in 

power than can be considered realistic. Also, 

the local power peaks are not aligned with 

the local maxima of the road gradients, as 

should be expected. Both of these artifacts 

may be due to an incorrect height profile that 

Strava might have used. The Norton Summit 

segment continuously climbs in altitude, but 

the publicly available height profile provided 

by Strava (Strava 2020) for the segment 

incorrectly shows several stretches of the 

road with negative gradients. 

The Powerbike strategies were 

investigated in a laboratory study (Wolf et al. 

2016) and a field experiment (Artiga 

Gonzalez et al. 2019) confirming validity and 
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feasibility. Because of the analogy between 

Powerbike and BestBikeSplit strategies, one 

can expect similar performance for the 

BestBikeSplit strategies. 

The major part of the riders on the 

Norton Summit segment yielded a higher 

average power than the computed strategies 

suggest and could therefore benefit from the 

computed strategies. These riders can 

improve their performance by following an 

optimal strategy. While the fastest and most 

experienced riders already adapted 

strategies that are close to optimal, it is 

possible for riders who are already 

performing well to further improve their 

efficiency by adopting optimal strategies. 

Even though there is also a considerable 

number of riders who climbed the Norton 

Summit segment at a lower average power 

than the computed strategies suggest, this is 

not a contradiction to the optimality. Since 

the Powerbike strategies ensure the 

feasibility by incorporating a physiological 

model, it is possible that a rider with 

diverging physiological capabilities finds a 

strategy with lower average power 

requirements. 

Still, riders of both groups can profit by 

having a digital pacemaker as this can be 

highly motivational and challenge the riders 

to new best performances. 

5. Conclusions 

We showed that the majority of the 

12,202 riders of our empirical dataset could 

have slightly benefited from adapting to a 

computed pacing strategy on the 5.54 km hill 

climbing segment. Therefore, optimal pacing 

strategies may well serve as one of the 

components integrated into the concept of 

marginal gains that became popular in road 

cycling over the last years. 

Supplementary Materials: The data of the 12,202 

maximum effort rides is available online at   

https://www.mmsp.uni-

konstanz.de/research/projects/powerbike/. 
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