

Blood Flow Limitations in the Iliac Arteries in Cyclists.

Impact on Performance Measured by Techniques During Exercise

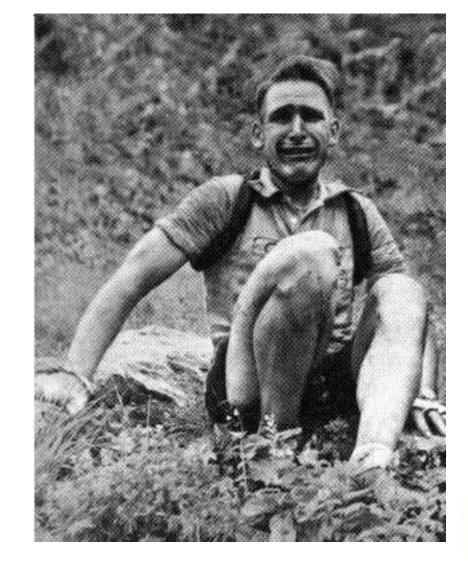
Date: 04 July 2019 PhD student: Martijn van Hooff

Promotor: prof. Hans Savelberg (UM); dr. Goof Schep (MMC)

Disclosure

No conflict of interest

Sponsorship c.q. grant money: ZonMw [75020017]


Sport-related vascular problem?

What are the complaints???

Pain, cramp and powerlessness at/near maximal intensity, which disappears within a few minutes in rest

Particularly in time trail posture!

Prevalence sport-related vascular problem

- Control group 36 cyclists (age 24 yrs; sd 3) 1/6 (17 %)
- Dutch Olympic cyclists/triathletes team 'Sydney 2000': 5/25 (20 %)
- Dutch touring cyclists: 1 500 000 >5 hours/week: <u>Prevalence unknown!</u>

Regular vascular medicine versus sports medicine

>90% atherosclerosis Less healthy/unhealthy lifestyle ±90% > 50 yrs

Healthy lifestyle
Average age <30 yrs

Let's compare vessels!

Atherosclerosis

Peak cardiac output: ± 10 l/min

Demand: < 1-3 l/min

Diameter: < 50 %

Surface: < 25 %

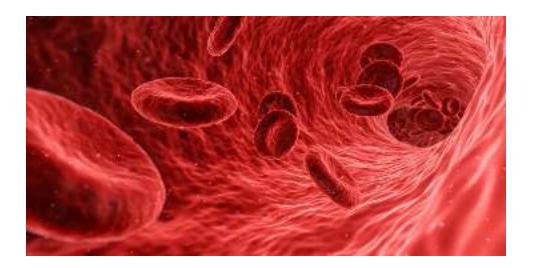
Normal

Peak cardiac output: ± 10-15 l/min

Athlete

Peak cardiac output: ± 25-35 l/min

Demand: 10-15 l/min


Diameter: ca. 125%

Surface: ca. 150-200 %

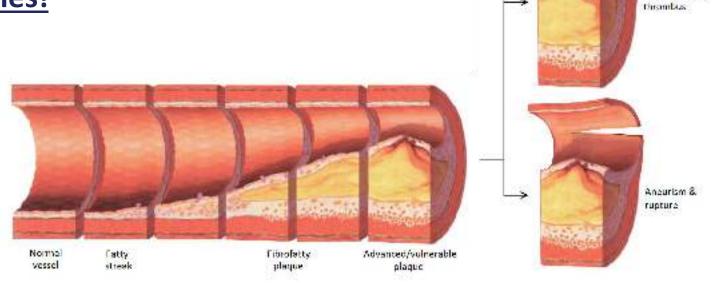
Regular vascular medicine

Crtical stenosis

Superimposed

Diagnostic question:

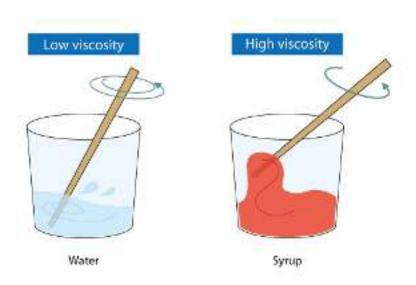
NOT: 'Is there an injury?'

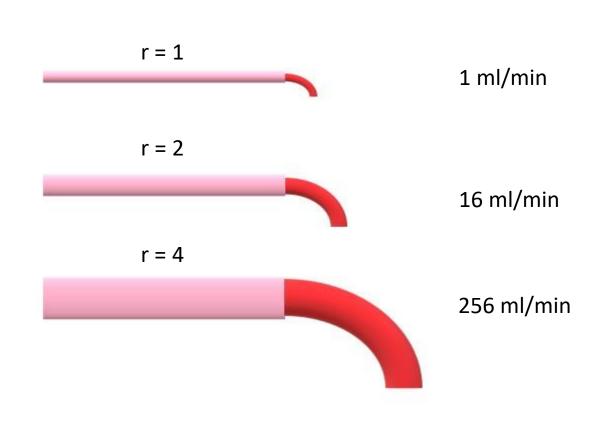

BUT: 'Is it serious enough to treat?'

Diagnostic tools:

Provocative testing Imaging

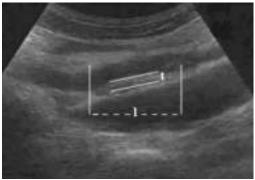
Only intravascular abnormalities!

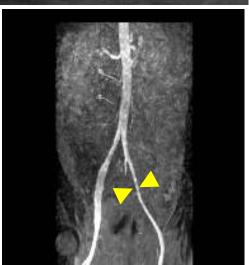



Sports related vascular problem?

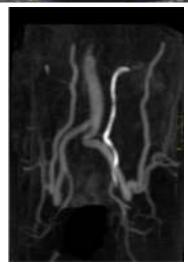
Blood Flow
$$(Q) = \frac{\pi P r^4}{8\eta L}$$

P=Pressure r=Radius η=Viscosity L=Length vessel




Small decrease, huge difference!!

Types of abnormalities


Intravascular lesion

and/or

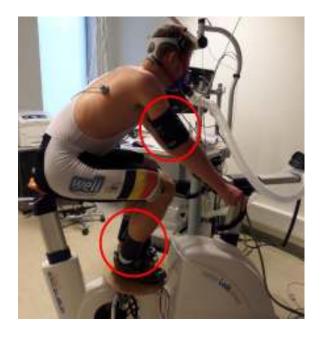
Schep G, Bender MHM, Schmikli SL *et al.* Color Doppler used to detect kinking and intravascular lesions in the iliac arteries in endurance athletes with claudication. European Journal of Ultrasound 2001; 14: 129-140

Schep G, Kaandorp DW, Bender MHM *et al.* Magnetic resonance angiography used to detect kinking in the iliac arteries in endurance athletes with claudication Physiol Meas 2001; 22: 475-487 van Hooff, M., Schep, G., Meijer, E., Bender, M., & Savelberg, H. Near-Infrared Spectroscopy Is Promising to Detect Iliac Artery Flow Limitations in Athletes: A Pilot Study. *Journal Of Sports Medicine*, 2018, 1-11. doi: 10.1155/2018/8965858

Sports related vascular problem?

	Sensitivity	Specificity
Complaints disappear <5 minutes	0.97	0.29
Complaints in >3 muscle groups of 6	0.48	0.94
Vascular bruit extended hip	0.36	0.94
Vascular bruit flexed hip	0.76	0.65

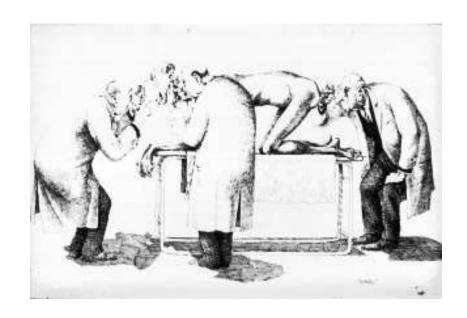
Schep, G., Schmikli, S., Bender, M., Mosterd, W., Hammacher, E., & Wijn, P. (2002). Recognising Vascular Causes of Leg Complaints in Endurance Athletes. Part 1: Validation of a Decision Algorithm. International Journal Of Sports Medicine, 23(5), 313-321. doi: 10.1055/s-2002-33141


Schep, G., Bender, M., Schmikli, S., Mosterd, W., Hammacher, E., Scheltinga, M., & Wijn, P. (2002). Recognising Vascular Causes of Leg Complaints in Endurance Athletes. Part 2: The Value of Patient History, Physical Examination, Cycling Exercise Test and Echo-Doppler Examination. *International Journal Of Sports Medicine*, 23(5), 322-328. doi: 10.1055/s-2002-33142

Sports related vascular problem?

	Sensitivity	Specificity
Ankle pressure <107 mmHg	0.53	0.85
Ankle-Brachial-Index (ABI) <0.54	0.43	1
Ankle pressure difference >23 mmHg	0.73	0.95

We have a problem: we still miss a lot of patients!!



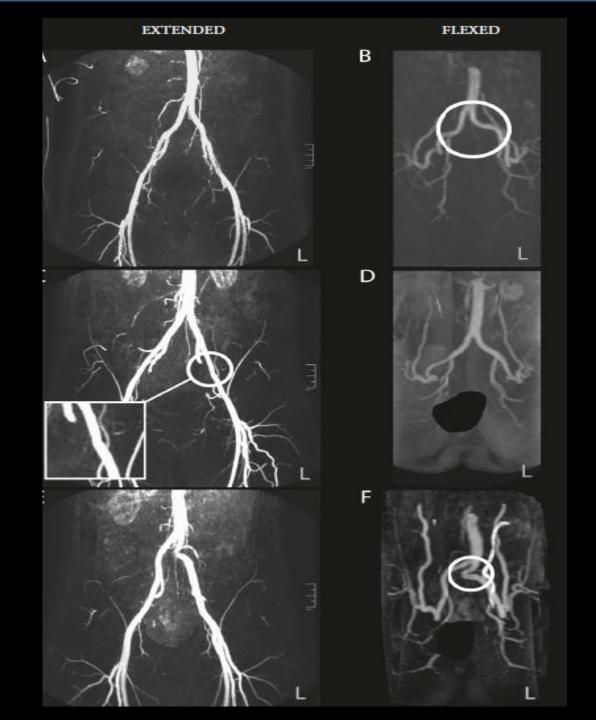
New Methods!?

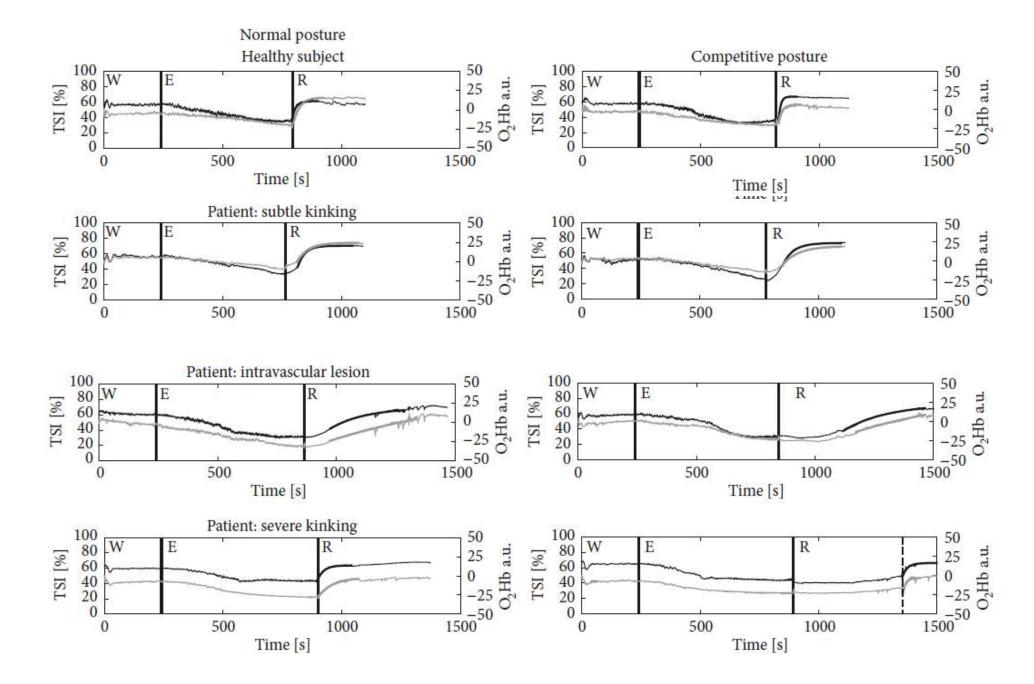
Near-Infrared Spectroscopy

Non-invasive measurement of tissue oxygenation

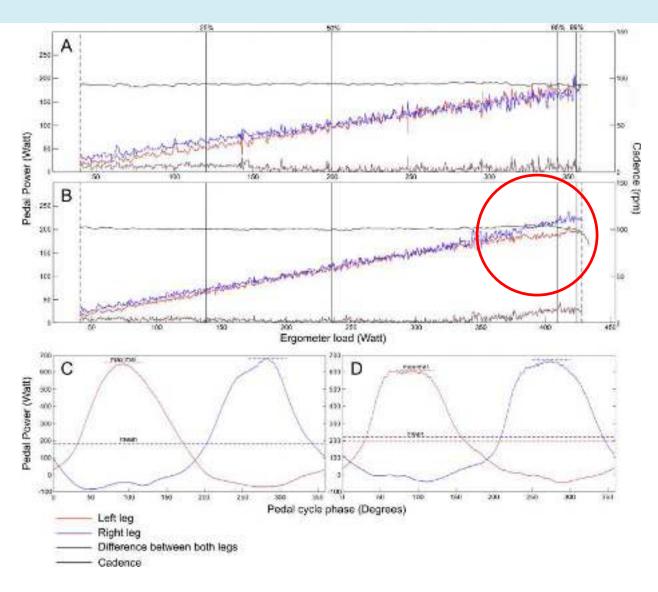
Based on:

- Relative transparancy of tissue for Near-Infrared light
- O_2Hb dependent absorption changes of Hb (and Mb)





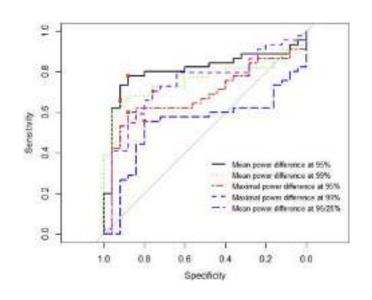
Multiple Case Report



Kinetic values

	Healthy top cyclist					Patient: Subtle kinking			Patient: Intravascular lesion				Patient: severe kinking				
	NP			CP		NP		CP		NP		CP		NP		CP	
	Left	Right	Left	Right	$n=18^{\dagger}$	Left*	Right	Left*	Right	Left*	Right	Left*	Right	Left*	Right	Left*	Right
TSI_{τ}	14.7	14.9	11.4	9.2	15 (4.0) [†]	30.2	30.8	44.0	27.5	150.1	18.0	183.2	***	26.4	28.3	* * *	₹8.7
${\rm TSI}_{\rm delay}$			12.1	10.3				69.8				269.9			-4.5	* * *	32
$\mathrm{TSI}_{\mathrm{MRT}}$			23.5	19.5				113.8				453.1			23 7	* * *	11).7
$TSI_R^{\ 2}$			0.994	0.987				0.997				0.995			0.993	* * *	0./21
$\mathrm{TSI}_{\mathrm{HVT}}$	11.6		20.1	18.0	21 (8.4) [†]			82.2	36.5			345.3	अंद अंद		18.3	* * *	91.8
$O_2Hb_{ au}$	25.9	26.2	18.6	15.1	20.5 (3.8) [†]	43.9	37.5	66.9	43.3	74	24.2			50.0	20.5		
O_2Hb_{delay}										1 5	00 80 W	Е	32	R	To .		50 25 =
$O_2 Hb_{MRT} \\$										~ TSI [%]	60 40 40 20 -						25 nr QHZ 0 -25 O
$O_2Hb_R^{-2}$										0.	0 0		500	1	000	150	50
$O_2 Hb_{\rm HVT}$	15.8									225.1	51.1	333.3	Tir	me [s]	34,3	T T T	40.0

Pedal Force Measurements


Kleinloog, J., van Hooff, M., Savelberg, H., Meijer, E., & Schep, G. (2019). Pedal power measurement as a diagnostic tool for functional vascular problems. Clinical Biomechanics, 61, 211-216. doi: 10.1016/j.clinbiomech.2018.12.020

Pedal Force Measurements

Relative power difference @ 95% of maximal workload of >5.1%.

Downside: works only on one-sided vascular problems!

Diagnosis: Major Challenge!

Athlete: **Be alert!**

Trainer/coach: Be alert!

Sports physician: **Be alert!**

Complaints in combination with power difference <u>near maximal capacity on</u> <u>your power meter</u>? It might be a sport-related vascular problem!

If you, or your coach suspects a sports-related vascular problem, specialist diagnostics are required!!

Insite group

<u>In</u>ternational <u>S</u>tudy group for <u>I</u>dentification and <u>T</u>reatment of <u>E</u>ndofibrosis

Conservative treatment

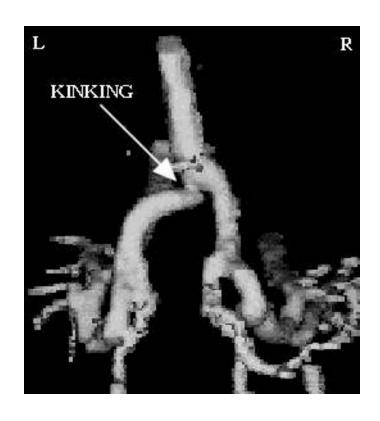
110 patients (2001-2005) follow up +/- 8 yrs

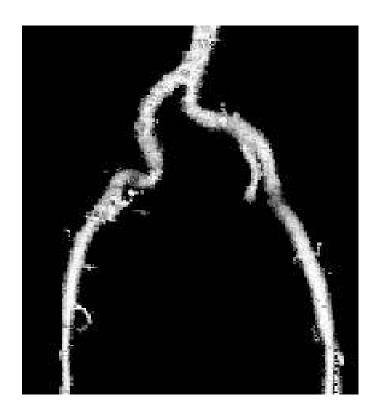
24 eventually operated

Questionaire

83 % satisfied!

17 % were particulary long distance cyclists, extreme competion cyclists


Operation indicated?



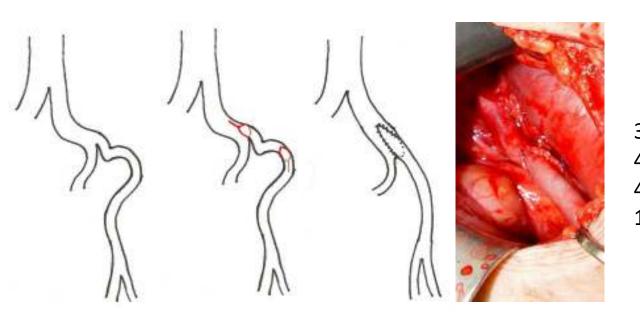
[1] Kinking (common iliac artery)
Normal length

[2] Kinking (external iliac artery) Excessive length

[3] Intravascular lesion (external iliac artery)

[1] Kinking

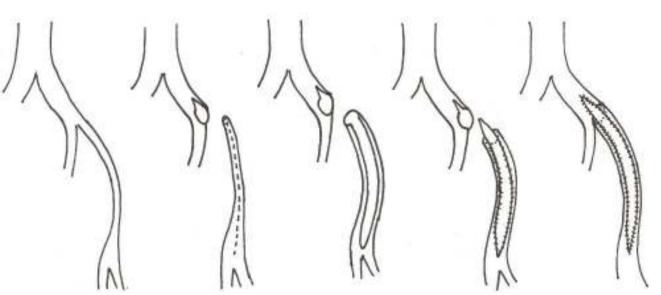
Kinking



Subjective improvement (23/23)

52 % (12/23) symptom free 35 % (8/23) mild symptoms, performing at desired level 9 % (3/23) Improved, inadequate for sports performance

Kinking [2] - Shortening



30 legs 43 % (13/30) symptom free 46 % (14/30) mild symptoms, performing at desired level 10 % (3/30) Improved, inadequate for sports performance

[3] Endovascular lesion, venous patch

37 legs

51 % (19/37) symptom free

27 % (10/37) mild symptoms, performing at desired level

5 % (2/37) mild symptoms, inadequate for sports performance

5 % (2/37) symptom free after re-operation

11% (4/37) unsatisfied

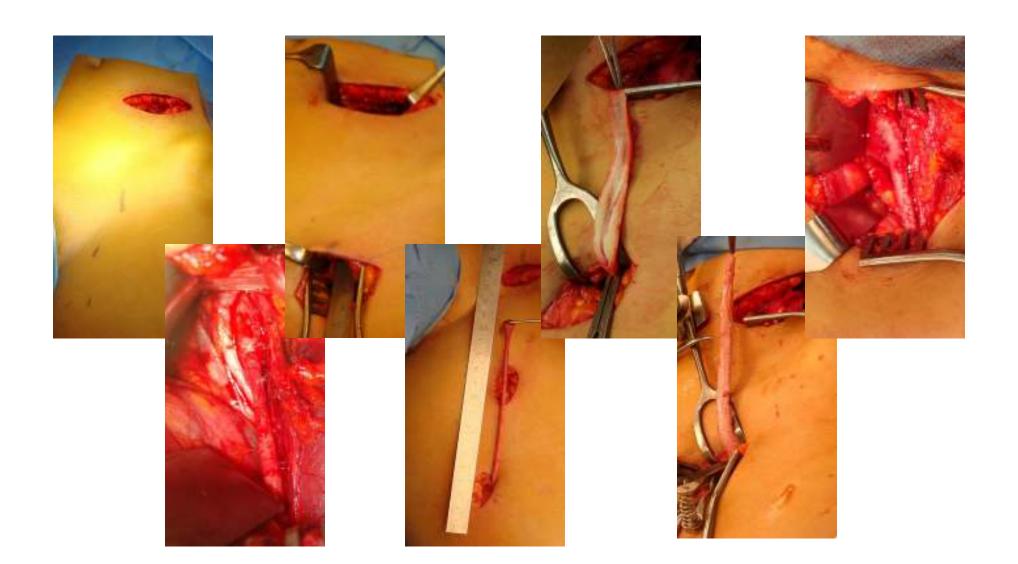
Workload: 5,35->5,7 Watt/kg

Ankle Brachial Index (ABI): 0,45 ->0,59

p<0,005

p<0,001

Unsatisfied:


1: other complaints

2: objective improvement

1: no post-operative results

[3] Endovascular lesion, venous patch

Self check [Dutch]

http://www.mmc.nl/sportgeneeskunde/selfcheck

Vaatprobleem Self-Check

Geef op basis van onderstaand plaatje aan waar de klachten voorkomen. Ga uit van de klachten die u ondervindt bij maximale inspanning (meerdere antwoorden mogelijk):

- □ 1 voorzijde bovenbeen
- 2 binnenzijde bovenbeen
- 3 bil
- 4 achterzijde bovenbeen
- 5 zijkant bovenbeen
- 6 onderbeen/kuit

Summary

Diagnosis: Major challenge

Treatment: Inadequate conservative treatment? Major surgical treatment!

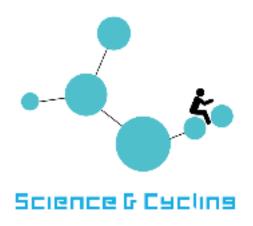
Take home: Be alert on complaints and performance!

Follow this project?

Expected completion of PhD: 2021

https://www.researchgate.net/project/New-Diagnostic-Tools-to-Detect-Iliac-Artery-Flow-Limitations-in-Athletes

https://www.linkedin.com/in/martijn-van-hooff-a285b33b



https://orcid.org/0000-0002-8976-3500

Questions?

Mail: m.vanhooff@mmc.nl or g.schep@mmc.nl

Procedure kinking

- Inguinal incision
- Open surgery
- Retroperitoneal
- Detethering of the iliac artery from the aorta until Poupart and the first 4 cm of the internal iliac artery.

