

State-of-the-art and technology advances for cycling aerodynamics

Delft University of Technology

Dr. Andrea Sciacchitano a.sciacchitano@tudelft.nl Aerodynamics Relevance in cycling

- Aerodynamic drag constitutes up to 90% of the drag a rider has to overcome
- Reduction of the aerodynamic drag can give a competitive advantage to the riders

Cycling aerodynamics Methods of investigation

Wind tunnel measurements

Computed Fluid Dynamics (CFD)

Wind tunnel measurements Drag by Force Balance

Numerical simulations by CFD RANS or LES simulations

Issues:

- Either inaccurate or
 - computationally expensive
- Require experimental validation

Track/Field testing Coast Down or Power Meter measurements

Can we measure the flow around the cyclist?

Particle Image Velocimetry (PIV)

- Small particles inserted into the flow and carried by the fluid
- Particles illuminated by a light source (laser)
- Images acquired by a digital camera
- Velocity field determined from cross-correlation-based image analysis

Dutch cyclist Tom Dumoulin

CAD model

3D scan of athlete in time-trial position

3D-printed mannequin in the wind tunnel

Flow analysis by large-scale PIV

TUDelft

Wake flow measurements

- V_∞ = 12.5 to 15 m/s (Re ~ 5x10⁵)
- Field of view: 1.0x1.6 m²
- 5 cm laser sheet thickness
- Images recorded with three high-speed cameras
- Digital resolution: 1.6 mm/px
- Force measurements via 6component balance
- Drag estimated via PIV wake rake approach

Drag determination from PIV measurements Conservation of momentum in a control volume

Time-averaged velocity and vorticity fields

Terra et al. 2019

Streamwise velocity

Streamwise vorticity

60

40

- Highest momentum deficit behind the rear wheel and the top of the stretched leg
- Vortices shed by the thighs, hips, feet and knee of the stretched leg

Velocity fluctuations and time-averaged pressure

Terra et al. 2019

Streamwise fluctuations

Pressure coefficient

- High velocity fluctuations due to shear layers at the hips location, thigh location and stretched leg location
- **High pressure** in the upper back of the cyclist
- Low pressure in the separated regions behind the lower back, and between the left foot and the rear wheel

Drag estimate Contribution of the individual terms

$$\overline{D} = \rho \iint_{S_{wate}} (U_{\infty} - \overline{u}) \overline{u} dS - \rho \iint_{S_{wate}} \overline{u'^2} dS + \iint_{S_{wate}} (p_{\infty} - \overline{p}) dS$$
Momentum term Re stress term Pressure term

Contribution to total drag	
Momentum term	95%
Re stress term	5%
Pressure term	<1%

ruDelft

Drag estimate Comparison with force balance

Typical uncertainty of the PIV wake rake of the order of 3%

Flow mapping around the cyclist Robotic volumetric PIV measurement

Robotic volumetric velocimetry around a cyclist Example of operations

Robotic volumetric velocimetry around a cyclist Velocity field reconstruction

τUD

18

Velocity field with streamlines

Flow 5 mm away from the surface

Surface Pressure

Can we measure the cyclist's flow in-field? Ring of Fire concept

- Cyclist passing through the measurement domain
- Flow measurements in the front and the back of the cyclist
- Drag from conservation of momentum in a control volume

Some of the Ring of Fire measurement campaigns

Individual Rider Video

Ring of Fire Measurements

June 2019 Tom Dumoulin Bike Park Sittard-Geleen The Netherlands

Large-scale PIV 500 Hz acq. Frequency

Rider: Luuk Herben

Authors: A. Sciacchitano A. Spoelstra N. Mahalingesh

Funding: NWO-TTW grant 15583

TEAM Sunweb

sportz

τu

Individual Rider Wake Velocity Field

ŕ

Individual Rider Wake Vorticity Field

Wake evolution over time

TUDelft

Drag comparison with literature

Spoelstra et al. 2019

More details on the accuracy of the system in the next presentation

Conclusions

- Aerodynamic drag constitutes up to 90% of the total resistance in cycling
- Large-scale PIV and robotic PIV for detailed information on the flow field around the cyclist
- Conservation of momentum in a control volume for determination of the aerodynamic drag
- Ring-of-fire concept for on-site flow and drag measurements

