Monitoring the training process of professional

CVClists

Dajo Sanders, Ph.D

Team Dimension Data for Qhubeka Maastricht University

Training Monitoring – Why?

Balance between training, competition and recovery to maximise performance at specific time points during the competitive season

Banister, 1975

Internal load metrics in cycling

Heart rate based

Banister's TRIMP (Banister & Calvert, 1975) Edwards' TRIMP (Edwards, 1993) Lucia's TRIMP (Lucia et al. 2003) Individualized TRIMP (Manzi et al. 2009)

Subjective

Session-RPE (Foster et al. 1996)

Rating	Descriptor	
0	Rest	
1	Very, very easy	
2	Easy	
3	Moderate	
4	Somewhat hard	
5	Hard	
6		
7	Very hard	
8	,	
9		
10	Maximal	

	Zones	Intensity measure	Weighting factor	Specific to
Banister's TRIMP	No	Mean HR Generic blood lactate response Ge		Gender
Edwards' TRIMP	Zone 1: 50-60% HR _{max}	HR in zones	Arbitrary (1 to 5)	Not applicable
	Zone 2: 60-70% HR _{max}	-		
	Zone 3: 70-80% HR _{max}			
	Zone 4: 80-90% HR _{max}			
	Zone 5: 90-100% HR _{max}			
Lucia's TRIMP	Zone 1: <vt< th=""><th>HR in zones</th><th>Arbitrary (1 to 3)</th><th>Not applicable</th></vt<>	HR in zones	Arbitrary (1 to 3)	Not applicable
	Zone 2: >VT <rcp< td=""><td></td><td></td><td></td></rcp<>			
	Zone 3: >RCP			
iTRIMP	Νο	Each HR value Individual blood lactate response		Individual
Session-RPE	No	RPE	/ /	

External Training Load

• Power Output based metrics

Training Stress Score (TSS)

 \rightarrow Normalized Power, FTP

Training Load Cycling (TLC)

→ 3" RA, environmental adjustments, power-duration characteristics

(Coggan, 2003)

TRAININGPEAKS

(Green, 2016)

Variables	FLAT ($N = 125$)	SEMO (N = 99)	HIMO $(N = 86)$
HR (beats-min ⁻¹)	119 ± 10	130 ± 9*	135 ± 9*†
%HR _{max}	51 ± 7	$58 \pm 6^{*}$	61 ± 5*†
%HROBIA	57 ± 8	$65 \pm 7^{*}$	$69 \pm 6^{*}$ †
%HRIT	65 ± 10	74 ± 11*	79 ± 9*†
Power output (W)	192 ± 45	$234 \pm 43^{*}$	$246 \pm 44^{*}$
%W	45 ± 9	53 ± 8*	57 ± 8*†
TRIMP	156 ± 31	172 ± 31*	215 ± 38*†

Values are means \pm SD. *N*, number of heart rate recordings; FLAT, flat stage; SEMO, semi-mountainous stage; HIMO, high-mountain stage; HR, heart rate; HR_{max}, maximal heart rate; HR_{OBLA}, heart rate at the onset of blood lactate accumulation; HR_{LT}, heart rate at the individual lactate threshold; W_{max}, maximal power output; TRIMP, training impulse (1).

* Significantly different from FLAT; † significantly different from SEMO.

able 2. Duration, intensity and load of baseline trainin	g and grand tour data.
--	------------------------

	Baseline training (n = 51)	First week GT (n = 84)	Second week GT (n = 98)	Third week GT (n = 82)
Duration (min)	187 ± 106	296 ± 26^{a}	297 ± 85 ^a	248 ± 91 ^{a,b}
Distance (km)	102 ± 55	162 ± 62^{a}	180 ± 43^{a}	148 ± 59^{a}
RPE	3.5 ± 1.9	6.0 ± 1.6^{a}	7.0 ± 1.9^{a}	$7.4 \pm 2.0^{a,b}$
Mean PO (W)	201 ± 30	208 ± 24	$237 \pm 41^{a,b}$	$241 \pm 56^{a,b}$
NP (W)	241 ± 45	271 ± 25^{a}	291 \pm 38 ^{a,b}	$281 \pm 43^{a,b}$
% PO zone 1 (min)	86.8 ± 12.2	75.9 ± 6.5 ^a	68.1 ± 13.9 ^{a,b}	67.8 ± 21.5 ^{a,b}
% PO zone 2 (min)	5.9 ± 5.6	9.5 ± 4.1	11.2 ± 5.0^{a}	12.9 ± 11.7 ^{a,b}
% PO zone 3 (min)	7.4 ± 7.7	14.7 ± 4.0 ^a	20.7 ± 11.1 ^{a,b}	20.2 ± 16.4^{a}
Mean HR (beats-min ^{-a})	124 ± 13	130 ± 9	130 ± 11	127 ± 16
Mean HR % HR _{max}	65 ± 7	66 ± 4	67 ± 6	65 ± 8
Maximal HR (beats∙min ^{-a})	167 ± 20	181 ± 7 ^a	177 ± 9 ^a	174 ± 9
Mean training load				
sRPE (AU)	786 ± 673	1773 ± 505 ^a	2147 ± 972 ^{a,b}	1958 ± 992 ^a
itrimp (AU)	208 ± 180	292 ± 105^{a}	372 ± 138^{a}	270 ± 185^{a}
TSS (AU)	155 ± 104	261 ± 49^{a}	$300 \pm 104^{a,b}$	223 ± 111 ^{a,b,c}

Sanders et al. 2018

TABLE 3. Physiological responses to the different competition stages categories.

¹

Lucia et al. 2003

The dose-response relationship

- The method used to quantify the training load must be related to the outcome of importance
 - Fitness
 - Fatigue
 - Performance
- Pro-active versus reactive

Dajo Sanders, Grant Abt, Matthijs K.C. Hesselink, Tony Myers, and Ibrahim Akubat

Assess the dose-response relationship between different training load measures and changes in fitness and performance in well-trained competitive cyclists

Human Kir

ORIGINAL INVESTIGATION

	sRPE	iTRIMP	bTRIMP	eTRIMP	luTRIMP	TSS	TLC
% ΔΡΟ	0.54±0.39 [*]	0.81±0.17 ^{**}	0.52±0.34 [*]	$0.64 \pm 0.28^{*}$	0.67±0.32**	0.75±0.25**	0.74±0.36**
2mMol							
% ΔΡΟ	0.60±0.30 [*]	0.77±0.20 ^{**}	0.67±0.27**	0.73±0.23**	0.72±0.29**	0.79±0.22**	0.81±0.29 ^{**}
4mMOI							
% ΔΡΟ 9Ν4Τ	0.51±0.35	0.63±0.29 [*]	0.40±0.38	0.48±0.36	0.70±0.30**	0.41±0.43	0.32±0.59

Discussion

- All training load methods used in the study show large to very large relationships between mean weekly training load and changes in submaximal aerobic fitness in this group of competitive cyclists
- Strongest relationships for both submaximal aerobic fitness variables were observed for iTRIMP , TSS and TLC
- These results support the use of a training load method that integrates individual physiological characteristics (i.e. HR – blood lactate relationship, threshold power, power-duration).

Subjective vs objective intensity - influence on training load?

"RPE provided moderate to very largely different results compared to HR or PO. Differences in training-intensity quantification can have a possible impact on the accuracy of training-load quantification and the evaluation of training characteristics."

Fitness – Physiological Assessments

amnick et al. 2019

Fitness – Integrating subjective & objective data

Fatigue – Psychometric questionnaires

- Profile of Mood States (POMS) (Morgan et al. 1987)
- Recovery-Stress Questionnaire for Athletes (REST-Q-Sport) (Kellmann & Kallus, 2001)
- Daily Analysis of Life Demands for Athletes (DALDA) (Rushall, 1990)
- Total Recovery Scale (TQR) (Kentta & Hassmen, 1998)

Fatigue – Integrating subjective & Objective data

Fatigue – Integrating objective & subjective data

Sanders et al. 2018

Performance Indicators

• Time trials

→ Power output or "time to complete" measured as performance indicator

 \rightarrow Interpretation based on rider type/specialisation (i.e. W/kg vs W)

Time-to-exhaustion trials

→ More variable (Currel & Jeukendrup, 2008)

 \rightarrow Has some ecological validity for certain aspects of cycling performance (e.g. finish climb)

Power-duration curves

Fig. 3 Changes in cyclist's RPP between the pre-competitive period (December to March) and the competitive period (March to September) on time durations between 1 s–5 min (top panel) and between 5 min–4 h (bottom panel).

Fig. 4 Comparison of the RPP of 2 cyclists on time durations between 1 s–5 min (top panel) and between 5 min–4 h (bottom panel).

Pinot & Grappe, 2011

Summary

Training load metrics that integrate individual physiological characteristics show the strongest dose-response validity with changes in the training outcome

➤A multivariate approach, including a combination of subjective (e.g. RPE) and objective (e.g. HR, power output) measures can provide valuable information regarding the adaptive response to training (i.e. "fitness") or fatigue

Establishing power-duration curves assist in identifying and tracking performance capabilities of road cyclists.

Sections logistics from the form the Sector	<u>.</u>	d alt	H

outcomes Reporting & Analysis

Thanks for listening!

