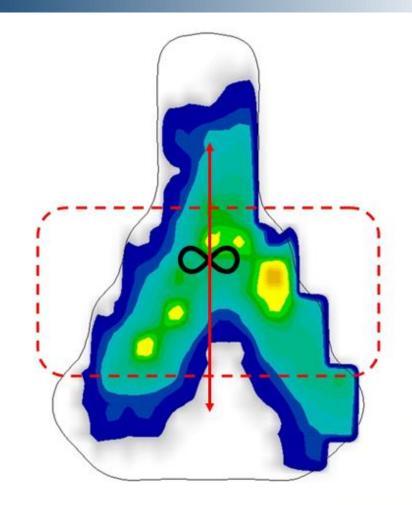
Women Data in Product Development MSc Lotte Kraus

Why is it so difficult to solve female saddle soreness?



Data analysis for ICS, Manchester 2016

gebioMized TECHNOLOGY

Differences between female and male cyclists:

* Pattern and position of COP* Pressure distribution

Dynamic profile

COP ratio 9,2 of "not fitted" female rider

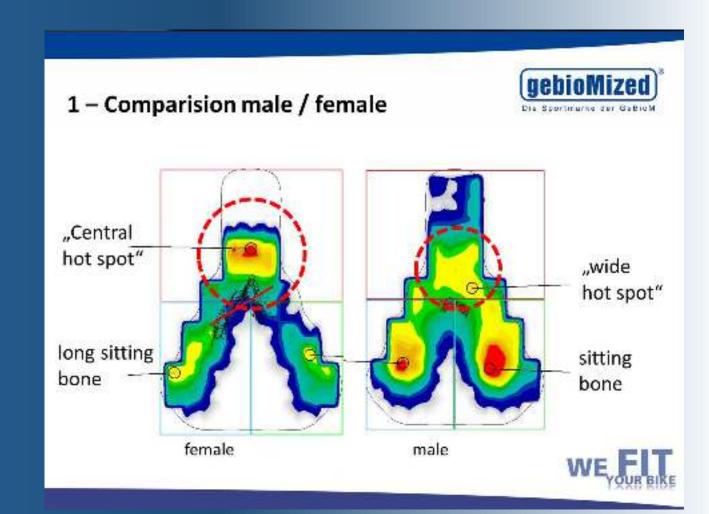
... in comparision to a male rider

COP ratio 7 of "not fitted" male rider

BUT:

both gender leave the lab with no significant difference in stability (COP Ratio 6,2 / 6,5)

Sattelmodelle: 4	n = 25 f	COP t	COP I	(longitudinal * transversal) / 100
	tops - mean	28,7	31,8	9,1
	SD	12,13	11,11	1,3
	hoods - mean	29,74	30,43	9,0
	SD	12,66	11,42	1,4
	drops - mean	30,14	30,66	9,2
	SD	13,23	12,02	1,6
	über alle 3 Lenkerpositionen			
	mean	29,53	30,96	9,1
	SD	12,64	11,49	1,5



Dynamic profile of a female rider: pressure distribution

- Central hot spot
- ... in comparision to a male rider
- Wider hot spot

BUT:

What happens in the front and middle area of the saddle?

gebioMized TECHNOLOGY

Introduction

Why women lack comfort and stability if the bicycle is not adjusted professional?

??? Gender Marketing / Psychology??? Geometry development??? (Contact Point) Components

Can we think about another perspective on developing saddles?

Introduction (Status 2016)

Method

2 analysis of data cases, n = 10 / 10(2016) 4 clinical studies n = 45 / 25 (2017 – 2019)

(Static sit bone distance)

Lab set up / stationary trainer with control of power output

Female and male athletes

3 handlebar positions

Transfer of individual set up into a moderate and an aggressive position (Roadbike) to fit bike

2 W / kg (Resistance)

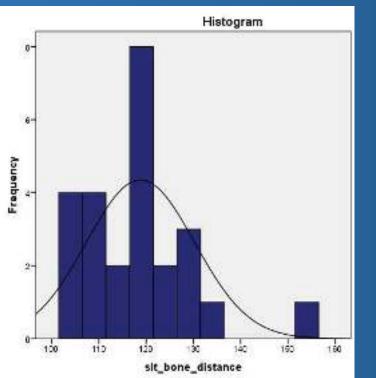
Steady cadence

Sample

45 F / 25 M Active, recreational rider Average age: 38 (F) / 32 (M) 2500 – 5000 km / year

	9Ce	height [cm]	weight [kg]	BMI [kg/m²]	years of cycling experience
min	20	159	45	17,58	0,5
max	60	178	75	26,45	40
mean	33,10	167,46	62,75	22,37	5,72
SD	11,44	6,52	7.96	2,55	8,63

N = 25	Age [years]	Height [cm]	Weight [kg]	BMI [kg/m²]	Cycling experience In years
mean	38	170	65	22,4	8,3
min	18	165	55	18,9	1
max	59	184	86	30,1	30

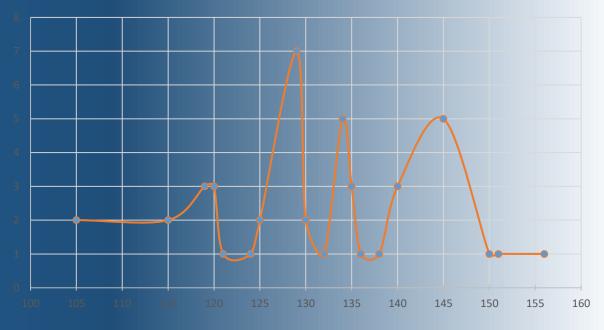

N = 25	Age [years]	Height [cm]	Weight [kg]	BMI [kg/m²]	Cycling experience In years
mean	32	182	78	23,5	10
min	15	175	61	18,02	2
max	61	193	109	34,79	40

occurence	range km/year			
3	1000 – 2500 km			
11	2500 – 5000 km			
7	5000 – 7500 km			
3	7500 – 10.000 km			
1	> 10.000 km			

occurence	range km/year
4	1000 – 2500 km
14	2500 – 5000 km
4	5000 – 7500 km
3	7500 – 10.000 km
0	> 10.000 km

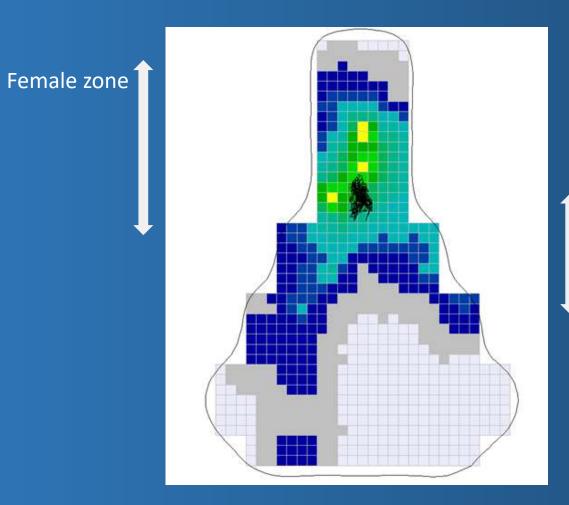
Results Static sit bone distances

Male



	min	max	mean	standard dev.
distance [mm]	104	155	119	11,46

Female

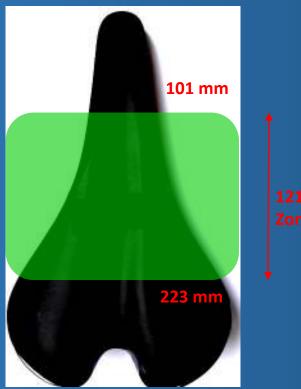

occurences - sit bone width [mm]

N = 45 mean = 131 mm

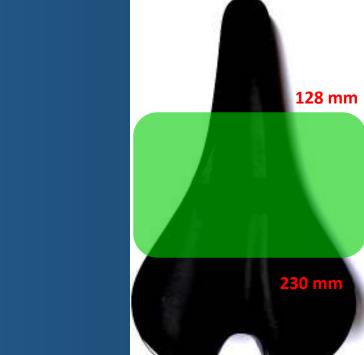
Results Position on the saddle

4 different saddle constructions

Male zone


female	Primary loading area (mm from saddle tip)				
		start	end	length	
	Saddle 1	101	227	126	
	Saddle 2	100	222	122	
	Saddle 3	103	219	116	
	mean	101	223	121	

	start	end	length
Saddle 1	130) 228	98
Saddle 2	122	224	102
Saddle 3	134	234	100
Saddle 4	124	233	109
mean	128	3 230	102
	Saddle 2 Saddle 3 Saddle 4	Saddle 1130Saddle 2122Saddle 3134Saddle 4124	Saddle 1 130 228 Saddle 2 122 224 Saddle 3 134 234 Saddle 4 124 233

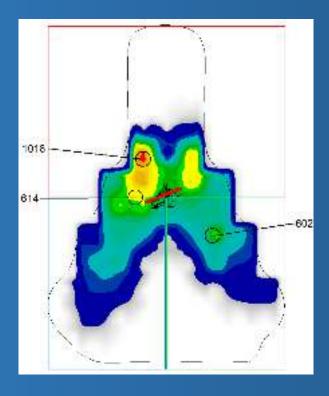

Discussion

Loading zones of female and male cyclist

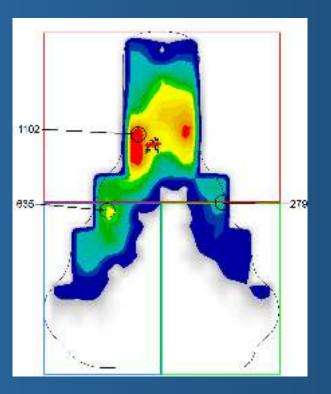
Female Zone

gebioMized TECHNOLOGY

102 mm


Zone length

Male zone

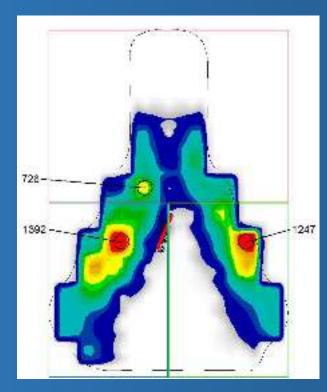

Identification of Dynamic Profiles (pubic loading type)

Female Front loading profile

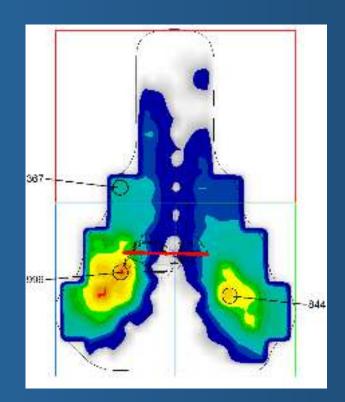
Male Front loading profile

Dynamic profile 1 (Female)

- Main loading area: pubic rails
- Less rear part (sit bones)


Dynamic profile 2 (Male)

- Main loading area: front / tip of the saddle and rear part (wings & sit bones)
- In need of wider saddle nose


Identification of Dynamic Profiles (sit bone loading type)

gebioMized TECHNOLOGY

Female rider Sit bone loading profile

Male Sit bone loading profile

Dynamic profile 3 (Female)

- CPP more frontal = more pelvic tilt
- Pubic rails more involved
- Longer loading zone in wing area (middle part of the saddle)

Dynamic profile 4 (male)

- CPP further back
- "Pure" sit bone load = less pelvic tilt
- In need of "leg clearance"

Conclusion

- Static sit bone width is not important
- Construction of the wing area is important
- Identification of "loading zones" is important

Saddle development for different "dynamic rider profiles"

Education of cyclists, fitter and retail specialists

Schade 2005, 2013, 2017 Daley 2006 Kraus 2015, 2016 Holliday 2019 Neuhaus (in review) Brandtner (in review)