The synergy of EMG waveform during bicycle pedaling is related to elemental force vector waveform

T. Kitawaki¹, M. Yoshida², R. Koyama³, T. Usui³, R. Tanaka³, K. Oouchi³, H. Takada³ & Y. Nakamura³

¹Department of Mathematics, Kansai Medical University, Osaka, Japan ²Faculty of Biomedical Engineering, Osaka Electro-Communication University, Osaka, Japan ³R&D Team, Lifestyle Gear Division, Shimano Inc., Osaka, Japan

Science & Cycling 2019

Conflict of Interest (COI) Disclosure

This study was a collaborative research between academia and industry, funded by Shimano Inc.

Presenting author: Tomoki Kitawaki

Introduction (1): Background

• Measurement of the pedaling force vectors

- Tangential : sum of the two waveform components
- Radial : sum of the three waveforms

Introduction (2): EMG synergies and purpose

EMG signals from the lower limb muscles indicated that pedaling is accomplished by combining <u>three similar muscle synergies</u>.

(Hug F., Turpin N., Guével A. and Dorel S., J Appl Physiol, 108(6) 1727-36. 2010)

Purpose:

- We performed synergy analysis of the EMG waveform, which was measured simultaneously with the force vector.
- To clarify the relationship between the elemental components of the force vector and EMG synergies.

Methods (1): Force vector measuring system

Pedaling force vector data was obtained every 15° Pedaling force can be obtain using the tangential and radial directions

Methods (1): Procedure and data analysis

Procedure

- Two subjects (no. 1: top-level amateur cyclist and no. 2: former professional)
- Load power: 100, <u>200</u>, 300 W
- Cadence : 70, <u>90</u>, 110 rpm

>200 W and 90 rpm set as the reference values

- Pedaling action: pushing, spinning, pulling, and pushing and pulling
- Saddle position: back (5 mm), forward (10 mm), up (3 mm), and down (5 or 10 mm)

Data analysis of the force vector

- The mean pedaling force vector was calculated at each pedaling condition for 60 s.
- The pedaling vector data were expressed as the sum of 2 or 3 elemental vectors.
 - The common elemental vector waveforms and parameters were determined.
 - The RMS error between the sum of the elemental vector waveforms and the original vector data was minimized.
 - The amplitude and phase angle differences were changed.
 - The pedaling vector data and parameters were plotted.

Results (1): Force vector resolution (example)

Results (1): Force vector resolution by pedaling action

tangential components: No.1 (200W 90rpm)

Results (1): Force vector resolution (pedaling action)

- Although the appearance of pedaling actions seem similar, the amplitudes of the components are different.
- The pedaling strategies of the subjects were different.

Change in the amplitude of force component

relationship

Change in muscle activity using EMG

Methods (2): EMG measurement

Surface EMG was recorded on the dominant leg

Electrode attachment

- Surface EMG was synchronously recorded at eight locations with force vector.
- Motion Capture System measured simultaneously, and each crank angle were calculated.

Methods (2): Procedure & data analysis

Procedure (same as force measurement)

- Two subjects (no. 1: former professional, and no. 2: top-level amateur cyclist)
- Load power: 100, <u>200</u>, 300 W
- Cadence: 70, <u>90</u>, 110 rpm

- 200 W and 90 rpm set as the reference values

• Pedaling action: normal, spinning, pulling, and pushing and pulling

Data analysis of the EMG

- We acquired the EMG signal at the same time as the pedaling data measurement.
- The synergy factor was determined from the EMG signal per the following procedure:
 - The EMG waveforms were rectified and integrated (iEMG).
 - The un-normalized iEMG waveforms were obtained every 5° using the crank position
 - A non-negative matrix factorization (NNMF) algorithm was applied to the iEMG waveforms of the pedaling cycles to differentiate the muscle synergies.
 - The number of synergies was set to five to accurately express the muscle output according to the variety of the pedaling conditions.

Results: Individual iEMG synergies

ID 2

ID 1

Five iEMG synergies of each subject (TDC: 0, BDC: ±180°)

- Five iEMG synergies: to analyze the various pedaling conditions.
- Peculiar changes appeared when the pedaling actions were varied.

Results: Amplitudes of the synergy components

ID 2

- Overall, the muscles were active at similar times.
- Due to the differences in the pedaling actions changed according to the activities of the muscles.
- Small muscles with a large amount of activity -> favorite action

Results: Correlation coefficient between the change in EMG synergy and force vector amplitude ID 1

Synergy 5

- Pushing phase: positive correlation with most muscular activity.
- Recovery phases: negative correlation with the magnitude of A1.

Results: Correlation coefficient between the change in EMG synergy and force vector amplitude ID 2

- In Synergy 2, the upside muscular (VM, RF, and GM) Synergy 2 activities increased and backside muscular (BF, GC, and SOL) activities decrease.
- The combination of various muscles changed, and the pedaling action also seemed to change.

Conclusion

In this study,

- We performed synergy analysis of the EMG waveform, which was measured simultaneously with the force vector.
- This was performed to reveal the relationship between the elemental components of the force vector and the EMG synergies.

As a result, the following findings were revealed:

- The changes in the amplitude of the elemental waveform components of the force vector and the amplitude of the EMG synergy were interrelated.
- The changes in the force vector were caused by the difference in pedaling due to the differences in the muscle force activity.

Future directions:

- Investigate the differences between the changes in the element waveform and muscle force assessment by increasing the number of subjects
- Study the corresponding muscle force activity and the pedaling action

This research was partially supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research (C), Grant Numbers JP25350763, and JP19K11565. E-mail: kitawaki@hirakata.kmu.ac.jp

Thank you for your kind attention