

Stephen S. Cheung, Ph.D. Brock University scheung@brocku.ca 289-968-5139 @EELBrock Environmental Ergonomics Laboratory

Hyperthermia & Arousal

> 1 h cycling in 19°C or 42°C > $\uparrow \alpha / \beta$ EEG ratio = \downarrow "arousal"

Nielsen et al. 2001

What Affects RPE?

1 h cycling in 18°C or 40°C

RPE best predicted by "arousal" or T_{core}

No relation to muscle activity

Environmental

Erponomics

Laboratory

Neuromuscular Impairment

> ↓ Force & voluntary activation with $\uparrow T_{core}$

- ➤ T_{core} direct effect
- Progressive changes
- independent of T_{skin}

Morrison et al. 2004 Thomas et al. 2006

Laboration:

Heat Stress, Perception & Exercise Stephen Cheung, Department of Kinesiology, Brock University

Breck

Engineering Biggeoonies Laisentery

Central Governor/Psychobiological

Physiological feedforward and feedback Perceived effort Past experience Motivation

Fitness & Performance Under Stress

Accuracy: Group Effects

NS unpleasant sensations

↑ accuracy

- Elite adventure racers vs control
 - Aversive breathing stimulus
 - Cognitive testing
 - ≻ fMRI

Paulus et al. 2012

Effect of Fitness on Thermal Perception

Untrained (U: 43.6mL) vs Trained (T: 59.0mL)

- ➢ 40°C, 30%RH, 3.5 km/h
- Close matching Pe/Ph in U
- $\succ \downarrow$ PeSI in T
 - > NS HR/RPE
 - \succ \downarrow TC
- Experience & habituation?

Tikuisis et al. 2002

Dopamine & Central Fatigue

- > 3 h continuous cycling
 - ▶ 0.7 CHO/kg/h
 - ≻ 18°C
- Reboxetine (8 mg)
- Ritalin (40 mg)
- Eye movements tested
 Non-locomotor
- Peak eye velocity maintained/enhanced
- "Quality" / accuracy NS w exercise/drugs

Heat Stress, Perception & Exercise Stephen Cheung, Department of Kinesiology, Brock University Connell et al. 2017

Effect of Dopamine

- 20 mg Ritalin
- 18 or 30°C
 - ➢ 60 min, 55% W_{max}
 - Set work TT (30 min, 75% W_{max})
- Ritalin in heat
 - ↑ Power output

 - ↓ Thermal discomfort

Roelands et al. 2008

Heat Adaptation & Perception

Thermal sensation

- NS resting
- ➤ Small ♥ mean & iso-time
- ➤ Large ♥ RPE
- > ?? Cognition ??

Tyler et al 2016

Heat Adaptation Timeline

Breck

Heat Stress, Perception & Exercise Stephen Cheung, Department of Kinesiology, Brock University Periard et al 2015

Psychological Skills Training

Barwood et al 2008

Motivational Skills Training

- > 30 min pre-load
- TTE @80% PPO
- Cognitive testing
- 2 weeks MST / CON

Laboration:

Heat = \uparrow **discomfort =** \uparrow **effort**

Heat adaptation

Not just physiological benefits

- Use heat selectively
 - Race simulations

Motivational Skills Training

- Physical benefit
- Cognitive benefit

scheung@brocku.ca

