

Experimental Characterization of a Cyclist's Wake

Science and Cycling - July 4th, 2019

F. Adam, W. Terra, A. Sciacchitano Department of aerodynamics – TU Delft

Wake Studies

Wake measurements with pressure
probes

T.N. Crouch et al. - Flow topology in the wake of a cyclist and its effect on aerodynamic drag

Wake Studies

- Characterisation of wake using PIV:
 - Small objects
 - Wake scanning

Instantaneous vs. average flow over cylinder

Average Instantaneous 1.5 U Mean 0.8 1.0 0.75 0.5 FO.6 y/D 0.0 0.45 0.3 -0.5 0.15 -1.0 0.0 U (m/s) -1.5 1 4 x/D² 04 06 08 0 3 0.889

V

https://www.simscale.com/docs/content/validation/FlowOverCylinder-LES/FlowOverCylinder-LES.html

Instantaneous flow over cylinder

Goal of Research

- Characterising the wake of a cyclist by:
 - Instantaneous full-field wake measurements
 - Identification of the dynamics of the main wake structures

Wind Tunnel Experiment

Wind Tunnel Experiment

- Wind tunnel inlet of 2.85x2.85m
- Flow field of 1.60x1.25m ۲
- Stereo-PIV
- 500 instantaneous image sets

Seeding rakes

Uce

Raw data from both angles

Proper Orthogonal Decomposition

Instantaneous data

Decomposing velocity fluctuations

$$\left\langle \overline{u'(x_i,t)u'(x_j,t)} \right\rangle = \sum_{n=1}^N \lambda_n$$

POD Mode 1

- Two hip vortices
- Rotating
- Low noise

POD Mode 2

- Two hip vortices
- Changing strength
- Rotating

Increasing Velocity

18km/h 500y [mm] 0--500--500 500 x [mm]

50km/h

Wake Similarity – 18km/h vs. 50km/h

2.5

4.5

Wake Similarity - 18km/h vs. 50km/h

Changing Helmet Position

Detection of Position Changes

- Lower half, negligible difference
- Visible difference in centre and at top
- Balance Drag

TUDelft

- Helmet Down: 21.2N
- Helmet Up: 22.2N

20

Conclusion

 First instantaneous, full-field cyclist wake measurement

Most energetic wake structures identified

Future Consideration

Investigation of pedalling model

 Modification of seeding system to reduce PIV noise

Moving seeding system further upstream

