

Science & Cycling

4–5 Juli 2018, Nontes, France

Acute effects of cycling shoe cleat position on biomechanical and physiological variables during cycling and subsequent running performance in a simulated Olympic distance triathlon

Millour G.¹, Bertucci W.¹, Duc S.¹, Janson L.²

¹ PSMS Laboratory (EA7507), UFR STAPS, University of Reims Champagne-Ardenne, Reims, France ² French Triathlon Federation, Reims, France

Introduction / Methods / Results / Discussion / Conclusion / Perspectives

Optimization of **cyclist's position** is essential for **health**, **comfort** and **performance** (Belluye & Cid, 2001)

Geoffrey Millour

Introduction / Methods / Results / Discussion / Conclusion / Perspectives

References for foot cleat pedal position

Morphologics

Geoffrey Millour

→ Mid-foot cleat position improves subsequent 5.5 km TT running performance after 30 min of pedaling at 65% of MAP but without any variation in cycling physiological variables (Paton & Jardine, 2012)

(Paton & Jardine, 2012)

→ Mid-foot cleat position during cycling could lead to muscular economy of calf muscles (Litzenberger et al., 2008).

➔ No benefits in draft-legal triathlon with a mid-foot cleat position, whether for cardiovascular cycling or running performance (Viker & Richardson, 2013).

Mid-foot cleat position corresponds to a very large displacement (-5cm), incompatible with the possible settings of the usual cycling shoes.

Geoffrey Millour

➔ Power output varies greatly during Olympic triathlon because of track characteristics and drafting

What is the impact of small shoe-cleat displacements on biomechanical and physiological variables of a simulated Olympic distance triathlon?

Geoffrey Millour

Population:

Ν	Age	Height	Mass	VO2max	MAP
7	22 ± 11 years old	1.73 ± 0.09 m	60.8 ± 7.7 kg	54.7 ± 3.8 ml/min/kg	267.9 ± 36.6 W

Experimental design:

- 1) Incremental cycling test until exhaustion
- 2) Two days cycle-run tests with two different cleat position in a random order.

Сус	ling	Transition	Running
X 8			
3'30 at 60% of MAP and 80 rpm	30" at 150% of MAP with free pedalling cadence	1 min	Max distance over 20 min
• •	(Start 5		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Geoffrey Millour

Geoffrey Millour

Materials and data collected:

<u>Wattbike</u>

• PO

Pedalling kinetics

<u>Tunturi T90</u>

- Distance performed over 20min
- Speed

Oxycon-Pro[®] system

- VO2, VCO2, HR VE and % of VO2max.
- C (mlO2.km⁻¹.kg⁻¹) = VO2 4,98 (mlO2.kg⁻¹.min⁻¹) / vitesse (km.min⁻¹) (Di Prampero, 1986)

EMG sytem

• Muscular activity of vastus medialis (VM), rectus femoris (RF), du biceps femoris (BF), du semimembranosus (SM), gastrocnemius médialis (GM), soleus (S) and tibialis anterior (TA)

Statistical analysis

Pairwise Wilcoxon tests to establish significant differences using Past V3.18 ®

Geoffrey Millour

Cycling

×: tendency (*p* < 0.08).

No significant differences of power output

No significant differences of power output kinetics parameters and other muscle activity between the two tests

Morphologics (

Geoffrey Millour

×: tendency (p < 0.08).

No significant differences of other muscle activity between the two tests

Geoffrey Millour

Cycling:

→ Unlike Paton & Jardine (2012) and Viker & Richardson (2013) BCP tends to decrease oxygen consumption.

→ This difference could be due to the smallest cleat position variation (1 vs. 5 cm) (more ecological) or the presence of supra-maximal accelerations (more representative of draft-legal triathlon)

→ The decrease of VO2 could be due to the **lower recruitment of knee flexor**.

→ Calf-muscle activity is similar during the two tests (≠ Litzenberger et al., 2008).

Geoffrey Millour

Running:

→ BCP leads to physiological economy (= Paton & Jardine, 2012)

→ Maybe caused by the slight **lower recruitment of knee extrensor**

→ Disagreement with the Paton & Jardine theory which suggest that the running economy was associated with reductions in plantar flexor muscle activity during the cycling phase of the event

Geoffrey Millour

Slightly backward 1st metatarsal cleat placement more appropriate in cycling as well at sub-maximal intensity as sur-maximal intensity

Slightly backward 1st metatarsal cleat placement more appropriate for subsequent running economy

Forward 1st metatarsal cleat placement would be deleterious for health (Belluye & Cid, 2001) but also for cycling performance!!!

Geoffrey Millour

Perspectives

Increase the number of participants!!

 Compare the 1st metatarsal cleat position and the middle of the 1st and 5th cleat position while sub-maximal and supra-maximal intensity

Geoffrey Millour

Thank you for your attention

Geoffrey.millour@etudiant.univ-reims.fr

- Bernard T, Hausswirth C, Le Meur Y, Bignet F, Dorel S, Brisswalter J. Distribution of power output during the cycling stage of a triathlon world cup. *Med Sci Sports Exerc.* 2009; 41(6): 1296-1302.
- Belluye N, Cid M. Approche biomécanique du cyclisme moderne, données de la littérature. Sci Sports. 2001; 16(2): 71-87.
- Burt Phil. Bike Fit: Optimise your bike position for high performance and injury avoidance. A&C Black. 2014.
- Candotti, C. T., Loss, J. F., Bagatini, D., Soares, D. P., da Rocha, E. K., de Oliveira, Á. R., & Guimarães, A. C. S. (2009).
 Cocontraction and economy of triathletes and cyclists at different cadences during cycling motion. *Journal of Electromyography and Kinesiology*, 19(5), 915-921.
- Chartogne, M., Duc, S., Bertucci, W., Rodríguez-Marroyo, J. A., Pernía, R., & García-López, J. (2016). Effect of shoes cleat position on physiological and biomechanical variables of cycling performance. *Journal of Science and Cycling*, 5(2).
- Di Prampero PE (1986). The energy cost of human locomotion on land and in water. Int J Sports Med. 1986; 7(2): 55.
- Litzenberger, S., Illes, S., Hren, M., Reichel, M., & Sabo, A. (2008). Influence of Pedal Foot Position on Muscular Activity during Ergometer Cycling (P39). In *The Engineering of Sport* 7 (pp. 215-222). Springer, Paris.
- Paton CD, Jardine T. The effects of cycling cleat position on subsequent running performance in a simulated duathlon. J Sci Cycling. 2012; 1(1): 15.
- Paton, C. D. (2009). Effects of shoe cleat position on physiology and performance of competitive cyclists. *International journal of sports physiology and performance*, 4(4), 517-523.
- Viker T, Richardson MX. Shoe cleat position during cycling and its effect on subsequent running performance in triathletes. *J Sports Sci.* 2013; 31(9): 1007-1014.

Geoffrey Millour

