

Physiological response to cycling with variable versus constant power output

Erik Kolsung
MSc. Human Movement Science

Background

- Traditional cycling training has generally been performed with constant power output (Faria et al., 2005)
- However, cycling is a sport that is stochastic of nature (Palmer, Noakes & Hawley, 1994, Jeukendrup, Craig & Hawley, 2000)
- The ability to tolerate variations in power is relevant for performance (Ebert, Martin, Stephens & Withers, 2006)

Study aim

- To investigate physiological response to cycling with variable versus constant power output as well as perceived exertion to these power conditions.
- To investigate if variations in power output which span above lactate threshold differ from variations below lactate threshold.

Material and methods

Day 1 – baseline testing

Table 1. Characteristics of the 15 included cyclists (mean ± SD)

rable 1. Characteristics of the 13 included cyclists (mean ± 3D)	
Age (years)	24.9 ± 7.6
Weight (kg)	72.6 ± 7.3
Height (cm)	182.2 ± 7.1
VO _{2max} (ml/kg/min)	72.9 ± 5.1
VO _{2max} (L/min)	5.3 ± 0.4
LT (W)	310.5 ± 21.7
LT (W/kg)	4.3 ± 0.4
PPO (W)	415.0 ± 28.0
PPO (W/kg)	5.8 ± 0.5
Number of races last season	33.9 ± 17.2
Training volume last season (hours)	691.0 ± 186.6

LT, lactate threshold; PPO, peak power output; VO_{2max} , maximal oxygen uptake

Material and methods

Equipment and measurements

- Oxygen consumption (Jaeger Oxycon Pro)
- Blood lactate concentration (Biosen)
- Heart rate (Garmin)
- Workload and pedalling frequency (Computrainer)
- Rate of perceived exertion (Borg's scale)

Statistical analysis

- Paired samples t-test
- Two-way repeated measures ANOVA

Results – oxygen consumption

^{*} indicate a significant difference in oxygen consumption during the variable power segment compared to the corresponding constant power segment, p < 0.05.

Results - lacate

^{*} indicate a significant difference in lactate during the variable power segment compared to the corresponding constant power segment, p < 0.05.

Results - heart rate

^{*} indicate a significant difference in heart rate during the variable power segment compared to the corresponding constant power segment, p < 0.05.

Results – rate of perceived exertion

^{*} indicate a significantly different rating of perceived exertion during variable power compared to constant power at the same intensity, p < 0.05.

[•] indicate a significant change in rating of perceived exertion from PRE to POST, p < 0.05.

 $[\]dagger$ indicates a significantly greater change in rating of perceived exertion from PRE to POST during constant power compared to variable power at the same intensity, p < 0.05.

VO₂ changes from PRE to POST

^{*} indicate a significant change in oxygen consumption from PRE to POST, p < 0.05.

Lactate changes from PRE to POST

^{*} indicate a significant change in lactate from PRE to POST, p < 0.05.

[•] indicates a significantly greater change in lactate from PRE to POST during variable power than during the constant power bout at the corresponding intensity, p <0.05.

Heart rate changes from PRE to POST

^{*} indicate a significant change in oxygen consumption from PRE to POST, p < 0.05.

Discussion

- Difference in VO₂ and lactate between VP and CP at high intensity was expected
- First study to investigate physiological response to VP vs. CP in a cohort of elite competitive cyclists
- Results differ slightly from previous studies (Liedl, Swain & Branch, 1999, Brickley et al., 2007)

Conclusion

 Small differences in physiological response to VP and CP

These results could be used as a tool in designing

training programs

Further research is needed

References

- Ebert, T. R., Martin, D. T., Stephens, B., & Withers, R. T. (2006). Power output during a professional men's road-cycling tour. *Int J Sports Physiol Perform*, 1(4), 324-335.
- Brickley, G., Green, S., Jenkins, D. G., McEinery, M., Wishart, C., Doust, J. D., & Williams, C. A. (2007). Muscle metabolism during constant- and alternating-intensity exercise around critical power. Int J Sports Med, 28(4), 300-305. doi:10.1055/s-2006-924354
- Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling: physiology and training part 1. Sports Med, 35(4), 285-312.
- Jeukendrup, A. E., Craig, N. P., & Hawley, J. A. (2000). The bioenergetics of World Class Cycling. *J Sci Med Sport*, *3*(4), 414-433.
- Liedl, M. A., Swain, D. P., & Branch, J. D. (1999). Physiological effects of constant versus variable power during endurance cycling. Med Sci Sports Exerc, 31(10), 1472- 1477.
- Palmer, G. S., Hawley, J. A., Dennis, S. C., & Noakes, T. D. (1994). Heart rate responses during a 4-d cycle stage race. Med Sci Sports Exerc, 26(10), 1278-1283.

Thank you for your attention!