

Optimising the analysis of road cycling sprint power data

Vincent Villerius & Louis Passfield

University of Kent

The importance of sprint training for road cycling performance

- Most races are won in a bunch- or breakaway sprint
- Races contain lots of attacks and severe accelerations
- High volume of training and racing leads to decrease in sprint capacity
 - Shift of type II to type I muscle fibres
- Important for all types of rider

How sprint training is performed

- Different sprint series or random sprints during training session
- Sprint durations last between 5 and 15 sec
- Sprints on the flat and sprints uphill
- Different speeds at start of sprint
- Aproximately the same cadence for each sprint condition
- Always after 1 or 2 easy days
- Throughout the season

How are sprint sessions analysed

- SRM powermeter and software
- Velobook website developed for the Cofidis Team
- Maximum Mean Power (MMP) values for 5", 10" and 15"

Several tendencies noted

- Influence of topographic condition
- Influence of start speed condition
- Influence of period of season
- Influence of « motivational conditions »
- Difference between training and race values

Important to understand any influences & differences

- To know if a sprint value is a good one
- To compare inter- and intra- session sprint performance

The research questions:

- How does topography and start speed influence sprint power in professional cyclists
- How does sprint performance vary during a season and over several seasons in professional cyclists
- How does « motivational condition » influence sprint performance in professional cyclists
 - Sprint vs. another rider in a Training Camp
- What is the difference between best training and race sprint performance in professional cyclists

Method

- 24 riders (all type of riders)
- 641 sprint sessions (5-20 sprints/session (M=10), 11-68 sessions/rider (M=27))
- 6268 sprints (110-750 sprints/rider (M=261))
- Excluded sprints at:
 - > 1200 m altitude
 - too high/low gear

Method

- 5" MMP values of each sprint were obtained with Velobook
- Sprint conditions were determined manually in each SRM file
- Slope and zero offset of each file was verified
- 9 sprint conditions :

Flat	Flat	Flat	False F	False F	False F	Uphill	Uphill	Up
med	fast	slow	med	fast	slow	med	fast	slow
(12)	(I3)		(12)	(I3)		(12)	(I3)	

- Season was divided in 3 parts :
 - November -> January (pre race season)
 - February -> June (early race season)
 - July -> October (late race season)

Statistical analysis

- Multilevel mixed effect modelling
 - Research questions (1-3) were treated as fixed effects
 - Reserach question 4 analysed separately
 - Riders regarded as random effects (intercept only)
- Dependent variable: 5-sec mean maximum power output
- Plain English translation:

We built a statistical model to predict riders' sprint performance.

We examined the effects of:

1) topograpy, 2) season, and 3) training camp.

Each rider had a different sprint power, (not the average).

Results

University of **Kent**

Effect of speed and gradient

Effects of speed and gradient on sprint performance

Med to Slow start	Med to Fast start	Flat to False Flat	Flat to Uphill
-17 W	-28 W	-4 W	-18 W
-2.0%	-2.4%	-0.3%	-1.6%

Sprints c	Sprints compared to flat and medium speed (Intensity 2 band)							
Flat fast	Flat slow	FF med	FF fast	FF slow	Up med	Up fast	Up slow	
-18 W -1 6%	0 W 0%	-10 W -0 9%	-32 W -2 8%	-27 W -2 4%	-28 W -2 4%	-27 W -2 4%	-24 W -2 1%	

Changes over time in sprints

- Each year sprint performance improves by 7 W (or 0.6%)
- Pre season is higher than early season -15 W (-1.3%) and late season -3 W (or 0.3%)
 - Training camp data removed
- Training Camps increase sprint performance by 77 W (or 6.7%)
- There's no effect of repeated sprints in same session
 - e.g. sprint #1 vs. sprint #10

Race vs Training

University of Kent

Take-home messages:

- % difference between flat and uphill
 - -1.6% Uphill
- % effect of starting speed
 - -2% at slow or fast
- % effect of season
 - -1.3% in mid-season
- % effect of sprinting with another rider
 - 6.7% improvement
- % difference for training and racing, flat and uphill
 - Train vs race -9 to -19% for race
 - Flat vs Uphill -4% to -10% for uphill

