

LOAD RATIOS DURING A CYCLING GRAND TOUR: DETECTING FATIGUE?

D Sanders¹, M Heijboer², MKC Hesselink³, TD Myers¹, I Akubat¹

¹ Newman University, Birmingham, United Kingdom.
 ² Team LottoNL-Jumbo professional cycling team, Netherlands
 ³ Maastricht University, Maastricht, Netherlands.

uajosanuers@gman.

Training monitoring

Evaluate the effect of a particular dose of training (*training load*) on fitness, fatigue and performance

Buchheit, 2014; Coutts, 2016

COMPARISON OF HEART RATE AND SESSION RATING OF PERCEIVED EXERTION METHODS OF DEFINING EXERCISE LOAD IN CYCLISTS

JOSE A. RODRÍGUEZ-MARROYO,¹ GERARDO VILLA,¹ JUAN GARCÍA-LÓPEZ,¹ AND CARL FOSTER²

TABLE 3. Session RPE, HR, and daily time spent in the 3 intensity zones analyzed in the different weeks of 21-day races.*†

	First week	Second week	Third week
RPE	5.1 ± 0.2‡	5.7 ± 0.2	6.5 ± 0.2
Maximal HR (b·min ⁻¹)	188 ± 1‡§	181 ± 1	180 ± 1
Mean HR (b·min ⁻¹)	143 ± 2§	140 ± 1	138 ± 1
Zone 1 (min)	98.9 ± 6.1	100.6 ± 6.2	118.3 ± 4.8
Zone 2 (min)	87.7 ± 5.5‡§	117.7 ± 5.1	132.1 ± 5.9
Zone 3 (min)	22.3 ± 2.8‡	10.9 ± 1.5	7.2 ± 1.0

*Zone 1 = exercise intensity below VT; zone 2 = exercise intensity between VT and RCT); zone 3 = exercise intensity above RCT; RPE = rating of perceived exertion; HR = heart rate; RCT = respiratory compensation threshold; VT = ventilatory threshold.

†Values are mean ± SEM.

Significantly different from the third week (p < 0.05).</p>

§Significantly different from the second week (p < 0.05).

- Increase in weekly RPE
- Decrease in maximal HR
- Slight decrease in mean HR

Use of subjective:objective load ratios to detect fatigue state?

Aim

This study evaluated the changes in integrated ratios of subjective and objective load measures of professional cyclists during baseline training and during a Grand Tour.

Can integrated load ratios provide additional monitoring information compared to solitary load measures?

Participants

 Twelve professional cyclists from a World-Tour cycling team Age: 29 ± 4.5 Body mass: 72.2 ± 5.3 kg VO_{2max}: 75 ± 6 ml·min·kg⁻¹ / 5.38 ± 0.51 L ·min⁻¹

• Physiological Assessment

Laboratory incremental test tarting at 2.50 W/kg and increasing by 0.5 W/kg every 3 min

Datacollection

RPE, power output and HR data collected during the 2016 Giro d'Italia and Vuelta a España and during baseline training in the two weeks preceding the Grand Tours

Session-RPE (sRPE)

Exercise Load

Post-exercise RPE: "How hard was this workout/stage?"

Session-RPE = RPE (CR-10 scale) x duration

	1 - 10 Borg Rating of Perceived Exertion Scale		
	0	Rest	
	1	Really Easy	
	2	Easy	
	3	Moderate	
_	4	Sort of Hard	
	5	Hard	
	б		
<u> </u>	7	Really Hard	
0	8		
	9	Really, Really, Hard	
3	10	Maximal: Just like my hardest race	

Exercise Load

Individualized TRIMP (iTRIMP)

- 1) Individual HR Blood Lactate profile in response to incremental exercise
- 2) Best fit exponential model based with fractional elevation in HR
- 3) Every HR reading an individual specific weighting factor
- 4) Every HR reading from exercise bout weighted
- \rightarrow summation provides total iTRIMP score

√ Strong dose-response relationships observed with changes in aerobic fitness (Sanders et al. 2017)

Exercise Load

Training Stress Score[™] (TSS)

 $TSS = [(t \times NP \times IF) / (FTP \times 3600)] \times 100$

whereas t is the time, NP™ is normalized power IF™ is intensity factor and FTP is the individual's functional threshold power.

 $\sqrt{}$ Strong dose-response relationships observed with changes in aerobic fitness (Sanders et al. 2017)

Results

	Baseline training	First week GT	Second week GT	Third week GT
	(n = 51)	(n = 84)	(n= 98)	(n = 82)
RPE	3.5 ± 1.9	6.0 ± 1.6^{1}	7.0 ± 1.9^{1}	$7.4 \pm 2.0^{1,2}$
Mean PO (W)	201 ± 30	208 ± 24	$237 \pm 41^{1,2}$	$241 \pm 56^{1,2}$
NP (W)	241 ± 45	271 ± 25^{1}	$291 \pm 38^{1,2}$	$281 \pm 43^{1,2}$
Mean HR (beats min ⁻¹)	124 ± 13	130 ± 9	130 ± 11	127 ± 16
Mean HR %HRmax	65 ± 7	66 ± 4	67 ± 6	65 ± 8
Maximal HR (beats·min ⁻¹)	167 ± 20	181 ± 7^{1}	177 ± 9^{1}	174 ± 9^{1}
% PO zone 1 (min)	86.8 ± 12.2	75.9 ± 6.5^{1}	68.1 ± 13.9 ^{1,2}	$67.8 \pm 21.5^{1,2}$
% PO zone 2 (min)	5.9 ± 5.6	9.5 ± 4.1	11.2 ± 5.0^{1}	$12.9 \pm 11.7^{1,2}$
% PO zone 3 (min)	7.4 ± 7.7	14.7 ± 4.0^{1}	$20.7 \pm 11.1^{1,2}$	20.2 ± 16.4^{1}
Mean training load				
sRPE (AU)	786 ± 673	1773 ± 505^{1}	2147 ± 972^{1}	1958 ± 992^{1}
iTRIMP (AU)	208 ± 180	292 ± 105^{1}	372 ± 138^{1}	270 ± 185^{1}
TSS (AU)	155 ± 104	261 ± 49^{1}	300 ± 104^{1}	223 ± 111^{1}

- Week-to-week increase in RPE & mean power output

- Week-to-week decreases in mean & max HR

- Training load highest in second week * Course profile (e.g. elevation gain) * Race tactics

Abbreviations: RPE, rating of perceived exertion; PO, power output; NP, Normalized Power[™], HR, heart rate; HR_{WAX}, maximal heart rate; sRPE, session rating of perceived exertion; iTRIMP, individualized TRIMP; TSS, Training Stress Score[™].

¹Significantly difference compared to baseline training data (p < 0.05)

 2 Significant difference compared to first week grand tour data (p < 0.05)

 3 Significant difference compared to second week grand tour data (p < 0.05)

TSS score of 300 AU in the third week of a Grand Tour will result in a sRPE that is **370 units** higher compared to sRPE in week 1!

	Baseline	GT week 1	GT week 2	GT week 3
TSS:	1.10 ±	1.02 ±	0.99 ±	1.12 ±
iTRIMP	0.56	0.34	0.26	0.51

- Decreasing trend towards week 2, increase comparing week 2 to week 3
- Trivial to small (d = 0.03 0.27)
 compared to baseline
- Variation

	Baseline	GT week 1	GT week 2	GT week 3
sRPE:	5.68 ±	6.44 ±	6.72 ±	7.51 ±
iTRIMP	4.80	2.39	1.47	4.12

- Small increases in the Grand Tour compared to baseline training data (d = 0.21-0.41)
- Trivial increase in the second week compared to the first week (d = 0.14) and small increase when comparing the third to second week (d = 0.28).
- Variation

	Baseline	GT week 1	GT week 2	GT week 3
sRPE:	4.82 ±	6.72 ±	6.98 ±	7.72 ±
TSS	2.50	1.68	1.98	2.45

- The sRPE:TSS ratio was moderately higher (d = 0.91 – 1.17) during the Grand Tour compared to baseline training
- Small week-to-week increases when comparing week 3 with week 1 (d = 0.49) and week 2 (d = 0.34) of the Grand Tour.
- Larger effect sizes, lower variation and statistical significance

* Significantly different from baseline (P < 0.05)

 \dagger Significantly different from GT week 1 (P < 0.05)

Discussion

- Solitary load measures: no clear decreasing or increasing trends observed over the course of the Grand Tours with load being highest in the second week for all three measures (sRPE, iTRIMP, TSS)
 - \rightarrow Race tactics \rightarrow Course profile
- However, when expressed as a ratio, small to moderate week-to-week continuous increases in the sRPE:TSS and sRPE:iTRIMP ratios were observed during the Grand Tours.
- The gradual increase in **subjective:objective load ratios** could indicate increasing fatigue that is not necessarily reflected by changes in solitary load measures.

Limitations

 No additional physiological or psychological indicators of fatigue were measured

• Taper strategies \rightarrow reduced load

Remains questionable how and if the proposed ratios of this study change during other training phases (e.g. preparatory phases without competitions).

Conclusion

- This study is the first to show the changes in integrated load ratios during a Grand Tour in professional cyclists.
- Changes observed in ratios were not reflected in solitary load measures suggesting that ratios can provide valuable additional information when monitoring athletes.
- The integration of a subjective (sRPE) and objective (iTRIMP, TSS) should be considered favourable to monitor fatigue compared to ratios solely based on objective measures

Practical Implications

1. **Stages 3 and 6,** summit finish High 'acute' fatigue?

2. **Stage 11,** took it 'easy' and did not pushed on to follow leaders

3. **Stage 14,** went in the attack early, hard day.

- Absolute ratio as an indicator of **acute fatigue**?
- Rolling average as indicator of **accumulated fatigue**?

Thank you for your attention!

dajosanders@gmail.com

@dajosanders

researchgate.net/profile/Dajo_Sanders

