

AUTONOMOUS VEHICLES IN THE PRO PELOTON: OPPORTUNITIES AND THREATS

PROF NEIL MANSFIELD

NOTTINGHAM TRENT UNIVERSITY

ENGINEERING YOUR FUTURE

Wouldn't it be great for cyclists if...

- ...drivers were never under the influence of alcohol or drugs.
- ...drivers always obeyed the rules of the road.
- ...drivers never fell asleep at the wheel.
- ...drivers were never distracted.
- ...drivers could monitor the road ahead and mirrors at the same time.
- ...drivers were aware of upcoming hazards.

It can go wrong... would autonomy be welcome?

Connected and Autonomous vehicles in context

- Can we believe the hype? / Should we believe the fear?
- How do CAVs really work?
- What are some of the risks associated with CAVs in the context of the Pro-peloton?

• This is here NOW and has been for some time...

Level 0

Level 0	No automation:	No direct vehicle control, but warning systems may be present (e.g.
		parking sensors).

Level 0	No automation:	No direct vehicle control, but warning systems may be present (e.g.
		parking sensors).
Level 1	Driver assistance:	Automated speed (cruise) control, lateral (lane keeping) control, and
		parking assistance.

Level 0	No automation:	No direct vehicle control, but warning systems may be present (e.g. parking sensors).
Level 1	Driver assistance:	Automated speed (cruise) control, lateral (lane keeping) control, and parking assistance.
Level 2	Partial automation:	System can take full control of vehicle (e.g. Tesla autopilot; autopark), but human supervisor is necessary to re-take control at any time.

Level 0	No automation:	No direct vehicle control, but warning systems may be present (e.g. parking sensors).
Level 1	Driver assistance:	Automated speed (cruise) control, lateral (lane keeping) control, and parking assistance.
Level 2	Partial automation:	System can take full control of vehicle (e.g. Tesla autopilot; autopark), but human supervisor is necessary to re-take control at any time.
Level 3	Conditional automation:	The driver can move their attention from the driving task in well- controlled environments (e.g. highways), but is needed to manually drive the car in complex scenarios. The car can take decisions on whether to overtake and can request a rapid return to human control.

Level 0	No automation:	No direct vehicle control, but warning systems may be present (e.g. parking sensors).
Level 1	Driver assistance:	Automated speed (cruise) control, lateral (lane keeping) control, and parking assistance.
Level 2	Partial automation:	System can take full control of vehicle (e.g. Tesla autopilot; autopark), but human supervisor is necessary to re-take control at any time.
Level 3	Conditional automation:	The driver can move their attention from the driving task in well- controlled environments (e.g. highways), but is needed to manually drive the car in complex scenarios. The car can take decisions on whether to overtake and can request a rapid return to human control.
Level 4	High automation:	The car can drive itself in almost all circumstances. Human control may be needed if systems fail (e.g. in poor weather) but the car can safely proceed if the driver is unable to take control. Human control may be possible at the human's request.

Level 0	No automation:	No direct vehicle control, but warning systems may be present (e.g. parking sensors).
Level 1	Driver assistance:	Automated speed (cruise) control, lateral (lane keeping) control, and
		parking assistance.
		parking assistance.
Level 2	Partial automation:	System can take full control of vehicle (e.g. Tesla autopilot; autopark),
		but human supervisor is necessary to re-take control at any time.
Level 3	Conditional automation:	The driver can move their attention from the driving task in well-
		controlled environments (e.g. highways), but is needed to manually
		drive the car in complex scenarios. The car can take decisions on
		whether to overtake and can request a rapid return to human control.
Level 4	High automation:	The car can drive itself in almost all circumstances. Human control may
		be needed if systems fail (e.g. in poor weather) but the car can safely
		proceed if the driver is unable to take control. Human control may be
		possible at the human's request.
Level 5	Full automation:	There is no possibility for the human operator to physically drive the
		car. The human occupant is effectively a passenger.
		cal. The human occupant is enectively a passenger.

Aiming for zero Knowledge is the key Life-saving innovations

"Our vision is that by 2020 no one should be killed or seriously injured in a new Volvo car" (Håkan Samuelsson, President and CEO, Volvo Cars, 2014)

CAR SAFETY FEATURES THAT SAVE LIVES

NTU

Technologies – Tesla Model S

- Radar Bosch
 - Forward facing in grille, 160m range
- Visual optical (camera) MobilEye
 - Forward facing in front of mirror, monochrome, 1MP
- Ultrasound
 - Low speed, close proximity

NTU

Features – Tesla Model S

- Autopark
 - With driver in vehicle
 - Without driver in vehicle
- Speed Assist
- Lane Assist
 - Side collision warning
 - Lane departure warning
 - Autosteer

- Forward collision avoidance
 - Collision warning
 - Emergency braking
- Autopilot
 - Traffic-aware cruise control
 - Autosteer
 - Auto lane-change

Predictable scenarios - many collisions can be avoided

Novel scenarios – things can go wrong

Change in behaviour of other road users

• Who recognise that the car with 'move out of the way'

Unpredictable behaviour of road users – e.g. spectators Assertiveness of systems? Risk of crime?

Need to break the rules of the road

Conclusions

- There are many aspects of autonomy that should be welcomed by the cycle race community.
- Teams and organisers should be cautious in selection and specification of vehicles that might include hard-wired automation and safety features.
- It is highly likely that safety systems designed to keep road users safe under 'normal' driving will be counter-productive when used in close proximity to cycle races on closed roads.

AUTONOMOUS VEHICLES IN THE PRO PELOTON: OPPORTUNITIES AND THREATS

PROF NEIL MANSFIELD

NEIL.MANSFIELD@NTU.AC.UK

ENGINEERING YOUR FUTURE