

Functional threshold power (FTP) in cyclists: validity of the concept and physiological responses

Fernando Klitzke Borszcz¹; Artur Ferreira Tramontin¹; Arthur Henrique Bossi²; Lorival José Carminatti¹, Vitor Pereira Costa¹

1: Research and Human Performance Laboratory (LAPEDH), Centre of Health Sciences and Sports (CEFID), Santa Catarina State University (UDESC), Florianópolis, Brazil.

2: School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, England.

E-mail: vitor.costa@udesc.br

Background

- Powermeters.
- Functional threshold power (FTP) is the highest power that a cyclist can maintain in a quasi-steady state for approximately one hour without fatiguing (Allen; Coggan, 2010).
- \bullet 60-min time-trial (FTP $_{60}$): FTP corresponds to the mean power output (Allen; Coggan, 2010).
- 20-min time-trial (FTP₂₀): FTP corresponds to 95% of the mean power output (Allen; Coggan, 2010).
- 8-min time-trial (FTP₈): FTP corresponds to 90% of the mean power output (Carmichael; Rutberg, 2009).

Background

Validity of using functional threshold power and intermittent power to predict crosscountry mountain bike race outcome

Matthew C Miller 1,2 , Gavin L Moir 1 and Stephen R Stannard2

Miller et al. (2014) suggest a linear regression model for predicting mountain biking performance time by using the relative to body mass \underline{FTP}_{20} .

Comparison of a Field-Based Test to Estimate Functional Threshold Power and Power Output at Lactate Threshold

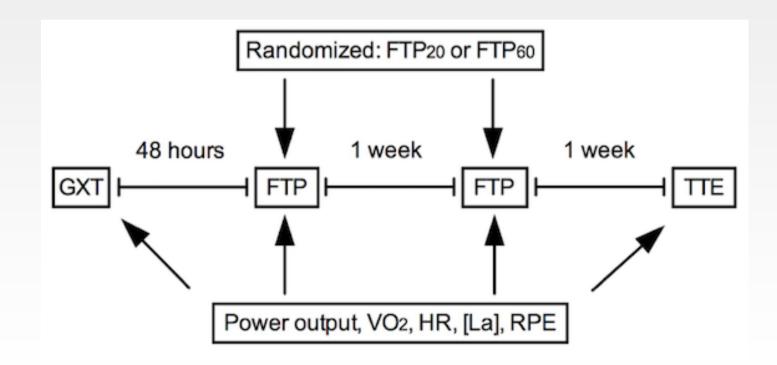
Timothy P. Gavin, 1,2,3,4 Jessica B. Van Meter, 1,4 Patricia M. Brophy, 1,4 Gabriel S. Dubis, 1,4 Katlin N. Potts, 1,4 and Robert C. Hickner 1,2,4

Gavin et al. (2012) suggested that $\underline{\mathbf{FTP}_8}$ (301 ± 13 W) was not significant different than $\frac{1}{4}$ mmol.L⁻¹ (293 ± 9 W, p < 0.05).

Title: A field-based cycling test to assess predictors of endurance performance and establishing training zones.

Sanders et al. (2017) found that the $\underline{\text{FTP}}_{\underline{8}}$ overestimates several LT methods in well-trained cyclists ranging from 21 to 62 W.

Background: objective


- This study had the following aims:
- (1) Verify the validity of the FTP_{20} with FTP_{60} and individual anaerobic threshold (IAT).
- (2) Analyse the physiological and perceptual responses during the TT used for FTP_{20} and FTP_{60} determination and during time to exhaustion (TTE) at FTP_{20} .

Methods: Experimental design

Methods: Subjects

- 23 trained cyclists (De Pauw et al. 2013).
- Indoor tests (Velotron Dynafit Pro, USA).
- GXT: 100W + 40W every 4-min until exhaustion.
- VO₂: (Quark PFTergo, Cosmed, Italy).
- RPE: 6-20 Borg scale.
- [La]: 20 μL (Biosen , Germany):

IAT: 1.5 mmol.L⁻¹ above the minimum lactate equivalent ([La].W⁻¹).

Table 1. Characteristics of the cyclists.

Variables	Mean ± SD		
Descriptive data			
Age (years)	32.7 ± 6.5		
Body mass (kg)	76.4 ± 8.3		
Height (cm)	179 ± 5		
Graded exercise test			
PPO (W)	327 ± 34		
PPO (W.kg ⁻¹)	4.3 ± 0.3		
VO_{2max} (L.min ⁻¹)	4.5 ± 0.7		
VO_{2max} (ml.min ⁻¹ .kg ⁻¹)	59.4 ± 5.9		
HR _{max} (bpm)	185 ± 8		

Methods: FTP₂₀, FTP₆₀ and TTE

General recommendations:

- Cyclists were able to view their progress over the course, distance and gear selection; all other information was blinded to remove any potential pacing effect.
- No verbal encouragement was provided (Currell and Jeukendrup, 2008).
- Cyclists were able to drink water ad libitum during FTP₆₀ and TTE.
- Self-selected pacing as fast as possible (FTP) with no restriction on gear selection, cadence or cycling posture.
- TTE: The Velotron was set up with a pacer at a fixed FTP₂₀. The test was interrupted when the cyclist could not follow the pacer for more than 10-s.

Methods: FTP₂₀, FTP₆₀ and TTE

Functional Threshold Power

	Time	Description	% of FTP	% of FTHR
Warm-up	20 min.	Endurance pace	65	70
	3 × 1 min. (1 min. RI)	Fast pedaling, 100 rpm	N/A	N/A
	5 min.	Easy riding	65	<70
Main set	5 min.	All-out effort	max	>106
	10 min.	Easy riding	65	<70
	20 min.	Time trial	100	99-105
Cooldown	10–15 min.	Easy riding	65	<70

Note: FTP = Functional Threshold Power. FTHR = Functional Threshold Heart Rate. N/A = Not Applicable

- FTP₆₀: Warm-up (10-min self-selected) + 60-min TT
- TTE-FTP₂₀: Warm-up (10-min self-selected) + TTE

Methods: Statistics

- Anova one-way with repeated measures.
- Anova two-way with repeated measures.
- Limits of agreements (Bland and Altman, 1990).
- Pearson's coefficient of correlation.
- P < 0.05.

Results: FTP, TTE and IAT mean values

Table 1 – Power output (PO), heart rate (HR), oxygen uptake (VO₂), blood lactate concentration [La] and ratings of perceived exertion (RPE) relative to individual anaerobic threshold (IAT), FTP₂₀, FTP₆₀ and time-to-exhaustion at FTP₂₀ (TTE). Values expressed as mean \pm SD.

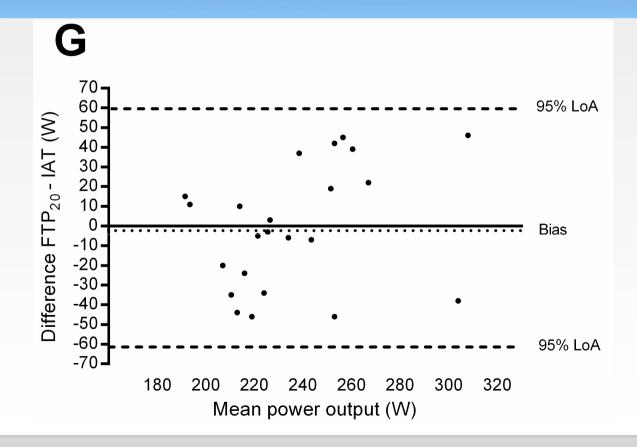
Variables	IAT	FTP ₂₀	FTP ₆₀	TTE
PO (W)	237 ± 29	236 ± 38	231 ± 33	$51 \pm 15.7 \text{ min}$
HR (b.min ⁻¹)	161 ± 7	159 ± 9	164 ± 11	165 ± 9
VO ₂ (L.min ⁻¹)	3.649 ± 0.6	3.505 ± 0.6	3.520 ± 0.5	3.685 ± 0.7
[La] (mmol.L ⁻¹)	2.7 ± 0.5^a	-	4.2 ± 1.9	5.1 ± 2.2
RPE	$12.5\pm1.7^{\rm a}$		15.2 ± 1.3	15.0 ± 1.2

a: significantly different from FTP₆₀ and TTE.

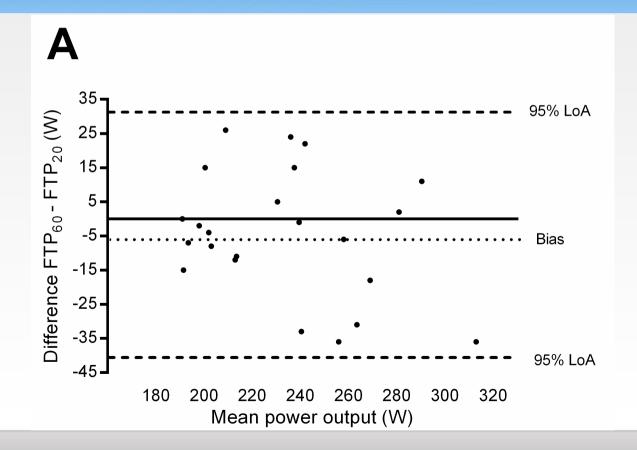
Results: Correlations

Table 2. Pearson's coefficient of correlation (90% confidence intervals)

	IAT x FTP ₂₀	IAT x FTP ₆₀	FTP ₂₀ x FTP ₆₀
Power output (W)	0.61*	0.76**	0.88**
	(0.32 to 0.79)	(0.55 to 0.88)	(0.77 to 0.94)
Heart rate (bpm)	0.29	0.20	0.65*
	(-0.07 to 0.58)	(-0.16 to 0.52)	(0.38 to 0.81)
Oxygen uptake	0.72**	0.79**	0.81**
(l/min)	(0.49 to 0.85)	(0.61 to 0.89)	(0.64 to 0.90)

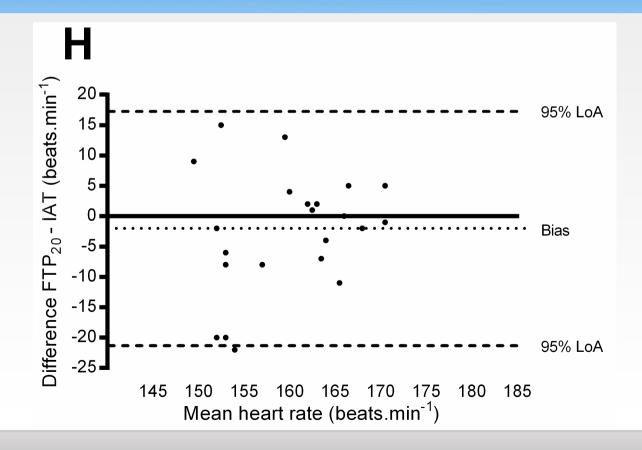

^{*}P < 0.001; **P < 0.0001.

Results: Bland-Altman plots FTP₂₀-IAT Power output

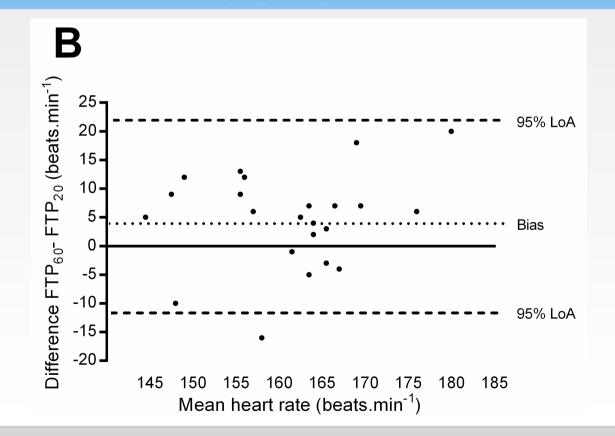


Results: Bland-Altman plots FTP₆₀-FTP₂₀ Power output

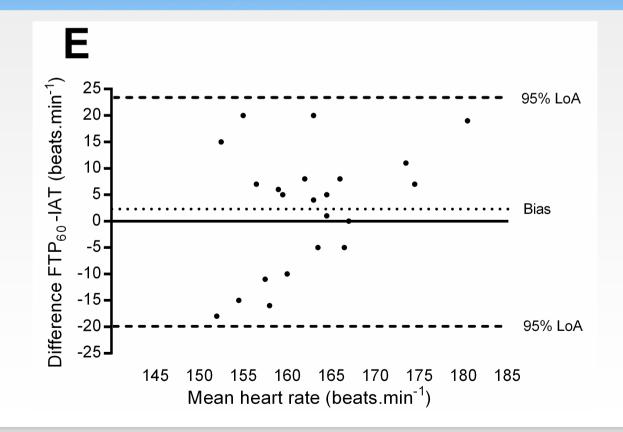
Results: Bland-Altman plots FTP₆₀-IAT Power output



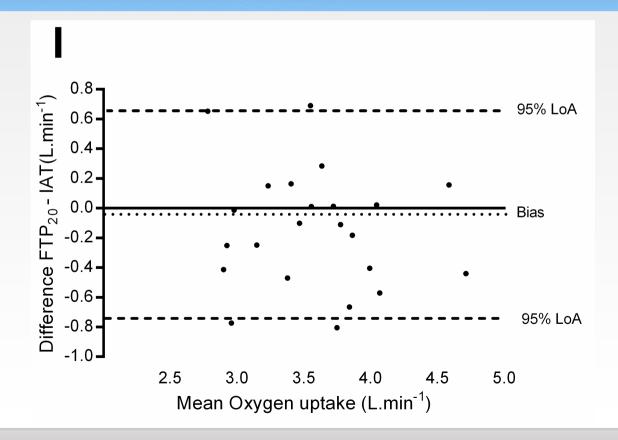
Results: Bland-Altman plots FTP₂₀-IAT Heart rate



Results: Bland-Altman plots FTP₆₀-FTP₂₀ Heart rate

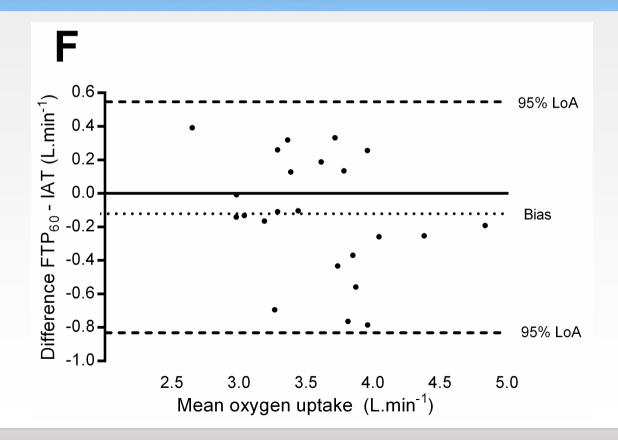


Results: Bland-Altman plots FTP₆₀-IAT Heart rate

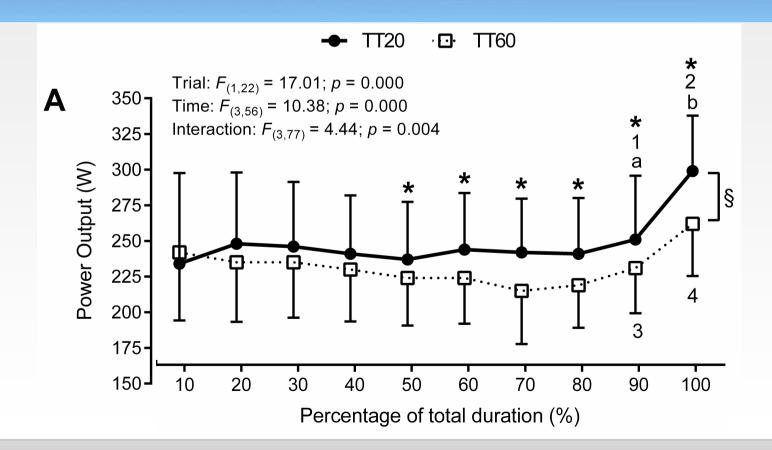


Results: Bland-Altman plots FTP₂₀-IAT Oxygen uptake

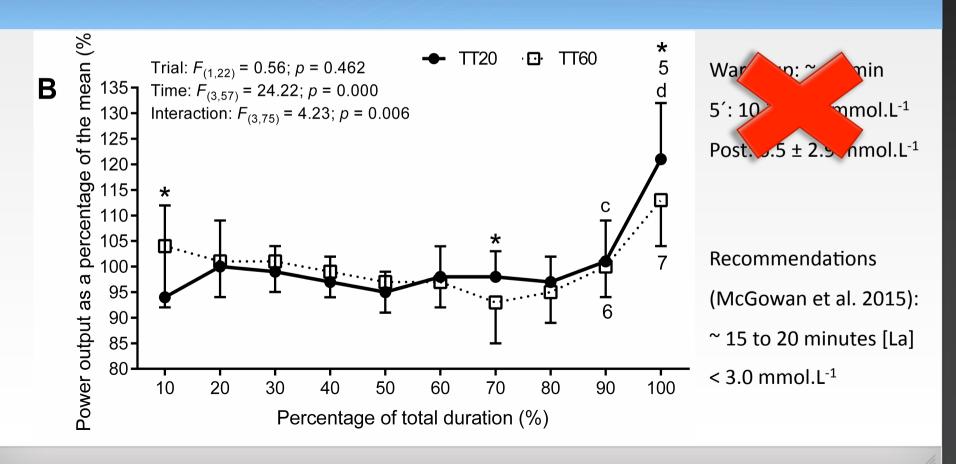
Results: Bland-Altman plots FTP₆₀-FTP₂₀ Oxygen uptake



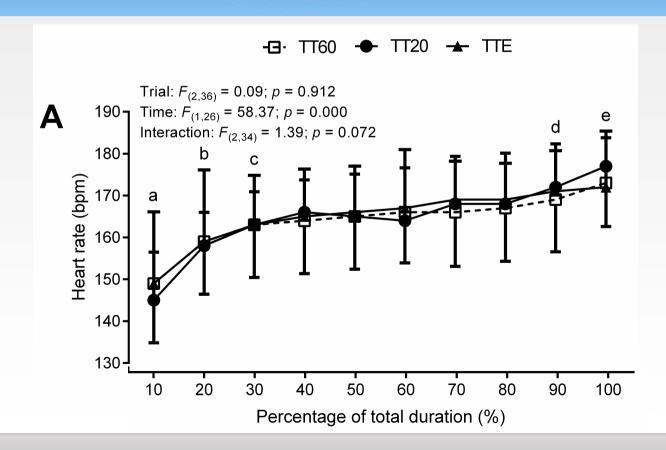
Results: Bland-Altman plots FTP₆₀-IAT Oxygen uptake



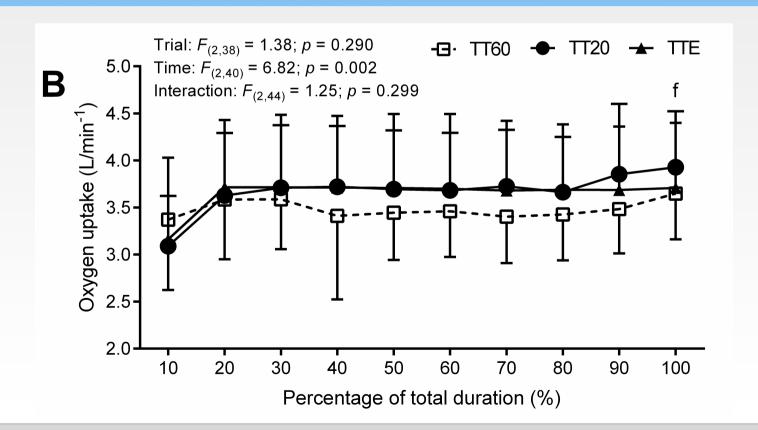
Results: Power output during time-trials



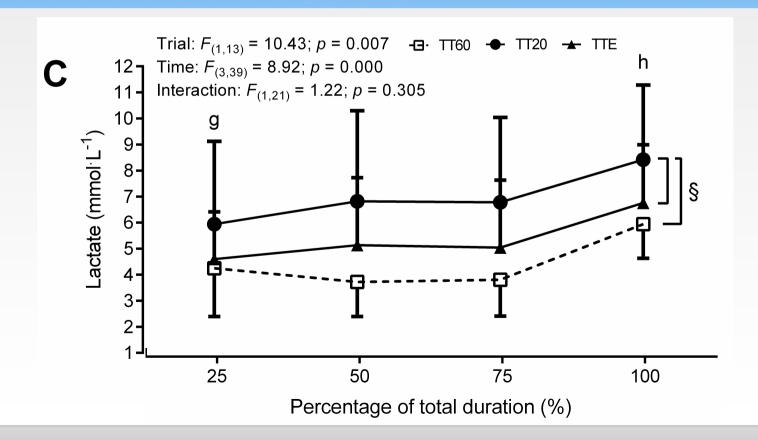
Results: Normalized power output during timetrials



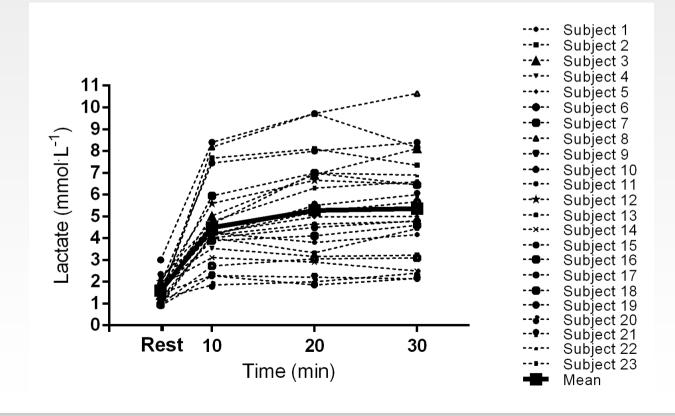
Results: Heart rate during TT and TTE



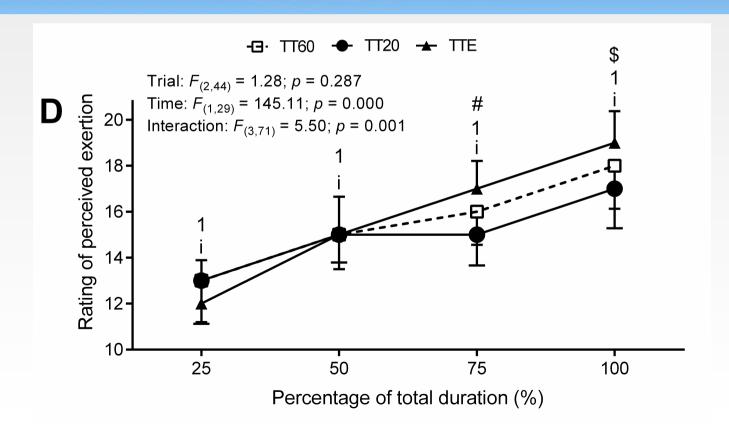
Results: Oxygen uptake during TT and TTE



Results: Blood lactate during TT and TTE



Results: Individual blood lactate response during TTE



Results: RPE during TT and TTE

Conclusions

- The mean PO, HR and VO₂ at FTP₂₀ were equivalent with IAT and FTP₆₀. High and significant correlations were found between FTP₂₀ with IAT and FTP₆₀. Also low bias and high limits of agreements were found between FTP₂₀ with IAT and FTP₆₀. In addition, TTE at FTP₂₀ (~ 51-min).
- The FTP₂₀ warm-up (~45-min) is not in according with previous recommendations (McGowan et al. 2015) consequently cyclists appeared to perform a negative pacing strategy during a 20-min TT.
- This study gives an opportunity for coaches to include FTP₂₀ test over a cycling season. However, the use of the FTP₂₀ to estimate IAT and FTP₆₀ should be analysed with caution due to high limits of agreements found between the variables.

Thank you very much!

vitor.costa@udesc.br

