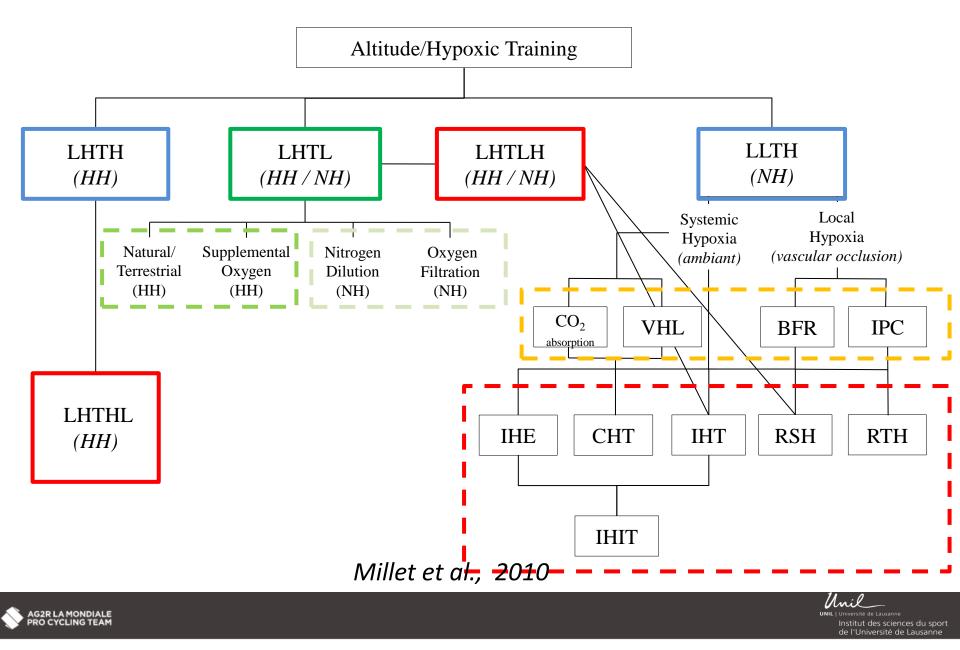


UNIL | Université de Lausanne

Institut des sciences du sport de l'Université de Lausanne

Altitude-induced power output increase in a Top-2 Tour de France Cyclist


BELLENOUE Samuel¹², QUICLET Jean-Baptiste², MILLET Grégoire¹

¹ISSUL, University of Lausanne, Switzerland ²AG2R-La Mondiale Pro Cycling Team, La Motte-Servolex, France

samuel.bellenoue@unil.ch

Sea-Level Exercise Performance Following Adaptation to Hypoxia A Meta-Analysis

Bonetti and Hopkins, 2009

Characteristics of study groups included in the meta-analysis sorted by protocol and first author

				\frown	\frown				
Study	Subjects	Sample size ^a	Desigr	Competit- ive level	Training phase	Hypoxic (h/d) ^b	Exposure/ intervention davs ^o	Altitude level (m) ^d	Hypoxia device
Live-high train-low									
Dehnert et al. ^[42]	Triathletes	6?; 10?	С	Subelite	?	~18-24	13	1956/800	
Levine and Stray-Gundersen ^[2]	Runners	9M, 4F; 9M, 4F	С	Subelite	Competitive	~18-24	28	2500/1200	
Stray-Gundersen and Levine ^[43]	Runners	6?	U	Subelite	?	~18-24	28	2500/1200	
Stray-Gundersen et al. ^[8]	Runners	8F, 14M	U	Elite	Competitive	~18-24	27	2500/1200	
Wehrlin et al. ^[44]	Orienteers	5M, 5F	U	Elite	Pre-season	~18-24	24	2456/1000	
Witkowski et al. ^[45]	Runners	8M, 4F	U	Subelite	?	~18-24	28	1780/1250	
	Runners	8M, 4F	U	Subelite	?	~18-24	28	2085/1250	
	Runners	8M, 4F	U	Subelite	?	~18-24	28	2454/1250	
	Runners	8M, 4F	U	Subelite	?	~18-24	28	2805/1250	

de l'Université de Lausanne

Sea-Level Exercise Performance Following Adaptation to Hypoxia A Meta-Analysis

Bonetti and Hopkins, 2009

Meta-analysis of effects on sea-level mean power output following adaptation to hypoxia

Effect	Natural altitude protocols		Artificial altitude protocols				
	live-high train-high	live-high train-low	live-high 8–18 h/d, continuous, train-low	live-high 1.5–5 h/d, continuous, train-low	live-high <1.5 h/d, intermittent, train-low	live-low train- high 0.5–2 h/d	
Effect of mean protocol ^a (%); ±90% CL ^b							
Elite	(1.6; ±2.7)	4.0; ±3.7	(0.6; ±2.0)		(0.2; ±1.8)		
Subelite	(0.9; ±3.4)	4.2; ±2.9	1.4; ±2.0	(0.7; ±2.5)	2.6; ±1.2	(0.9; ±2.4)	

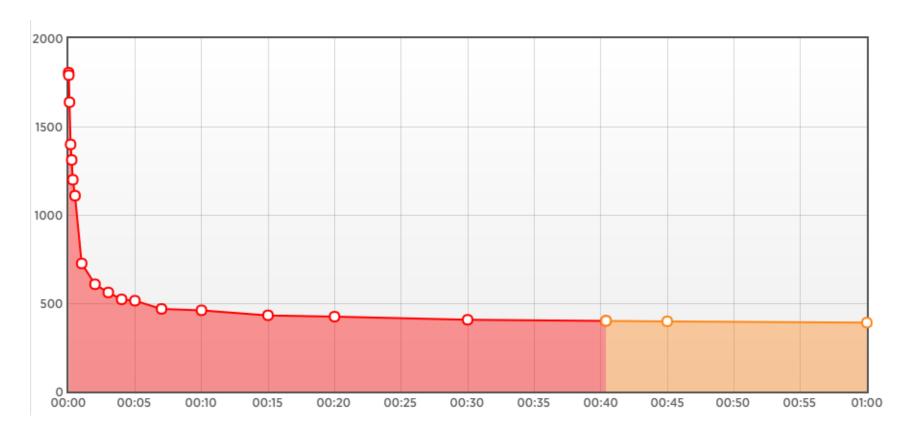
Questions :

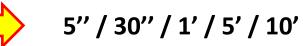
• Is the LHTL also effective with cyclists?

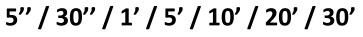
- Is it possible to expect the same range of gain with professional cyclists ?
- Is this level of gain maintained during the competitive period?

| ^{Université de Lausanne} Institut des sciences du spor de l'Université de Lausanne

Hypotheses


 Investigating multi-expositions in hypobaric hypoxia (Living High, Training Low) through the use of the record power profile (RPP) allows to assess and modellize performance changes in an elite cyclist.




L | Université de Lausanne Institut des sciences du sport de l'Université de Lausanne

Record Power Profile

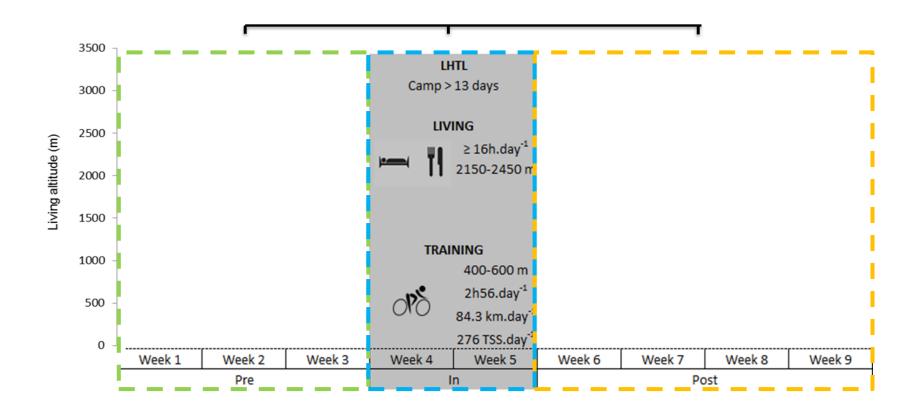
Subject

Rider

Date of birth: 9th November 1990 (26) Nationality: France Weight: 65 kg Height: 1.84 m

Points by specialty:

Professional cyclist since 2012



Institut des sciences du sport de l'Université de Lausanne

AG2R LA MONDIALE PRO CYCLING TEAM

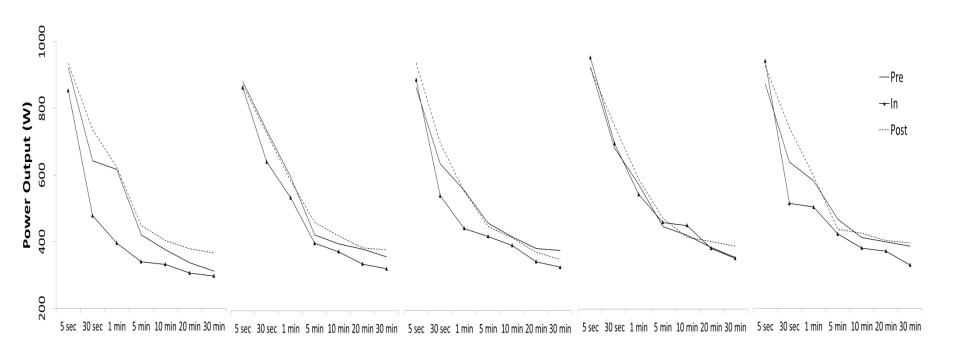
Method

• Measurement of RPP changes (%) for **5 training camps** (15-21 days) in altitude (2,150 - 2,450 m) over a period of **3 years**

Institut des sciences du sport de l'Université de Lausanne

Training

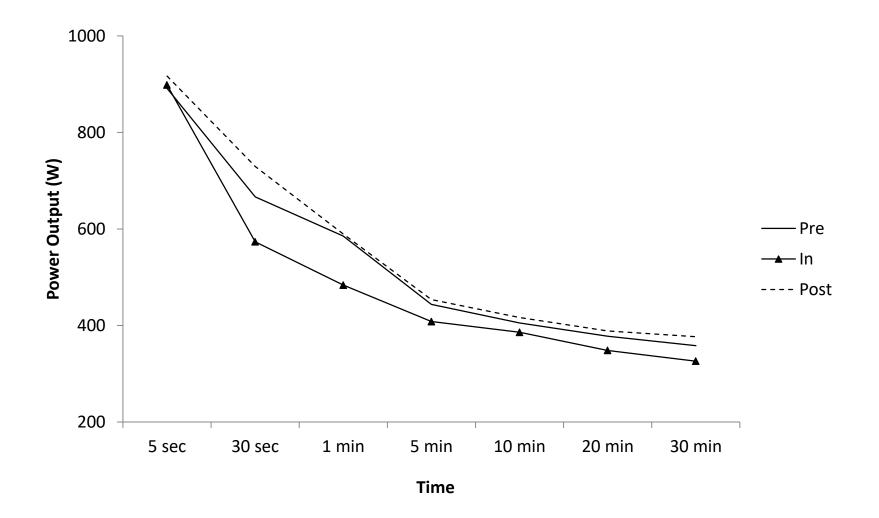
- Duration : 3:02 ± 00:12 h/day
- Distance : 89 ± 5 km/day
- Slope : 1 754 ± 211 m/day



	Camp 1	Camp 2	Camp 3	Camp 4	Camp 5	Moon	Standard
	2014 May	2015 April	2015 Mai	2016 April	2016 Mai	Mean	deviation
Low	87.2	76.9	79.9	74.1	75.4	78.7	5.2
Moderate	10.3	15.0	13.5	17.1	15.4	14.3	2.6
Hight	2.5	8.1	6.6	8.8	9.2	7.0	2.7

Pourcentage of time spent at low, moderate, and high intensity during the 5 training camps

Evolution of the RPP during the 5 training camps



^{Université de Lausanne} Institut des sciences du sport de l'Université de Lausanne

Institut des sciences du sport de l'Université de Lausanne

Evolution of the RPP during the 5 training camps

Performance changes from Pre to Post altitude training camp (%)

	Camp 1	Camp 2	Camp 3	Camp 4	Camp 5		
	2014 May	2015 April	2015 May	2016 April	2016 May	Mean	CV
	19 days	17 days	18 days	15 days	21 days		
5 sec	1.4	-1.2	8.7	-0.4	6.2	2.9	I 1.5 I
30 sec	14.6	-1.2	9.8	9.7	16.0	9.8	0.7
1 min	1.0	-2.0	-0.5	2.7	2.6	0.7	2.7
5 min	6.7	8.9	-2.2	5.4	-6.4	2.5	2.6
10 min	7.4	6.0	-0.7	-1.4	3.2	2.9	1.4
20 min	12.5	1.0	-2.8	4.5	1.0	3.2	1.8
30 min	17.6	5.8	-3.1	9.7	2.6	6.5	1.2

Université de Lausanne Institut des sciences du sport de l'Université de Lausanne

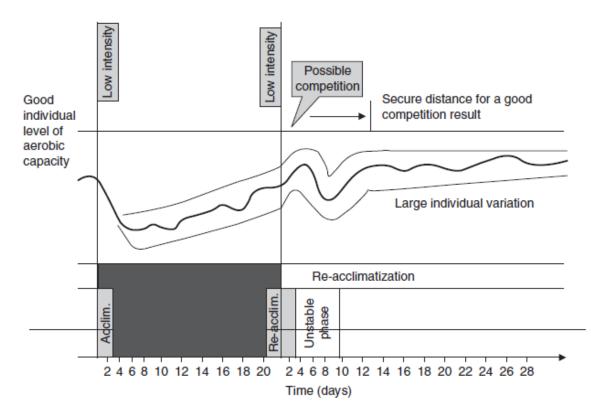
Year to year performances changes from Post- altitude training camp

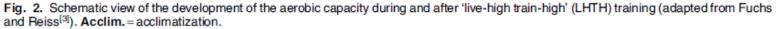
	Gain pe	Mean Gain	
X	2014-2015	2015-2016	per year
5 sec	1.4	-2.5	-0.6
30 sec	-1.2	1.4	0.1
1 min	-5.6	1.4	-2.2
5 min	3.3	0.4	1.9
10 min	4.7	0.2	2.5
20 min	2.4	3.6	3.0
30 min	4.1	3.4	3.8

⇒ For this elite cyclist, as previously demonstrated in endurance athletes (Millet et al., 2010), altitude (LHTL) induced a significant increased in power output, around 3-4 % for the aerobic part, and 4-5% for the anaerobic.

- Is the LHTL also effective with cyclists?
- Is it possible to expect the same range of gain with professional cyclists?
- Is this level of gain maintained during the **competitive period**?

Thank you for your attention !





l Université de Lausanne Institut des sciences du sport de l'Université de Lausanne

Post3-4

Millet et al., 2010

de l'Université de Lausanne

l Université de Lausanne Institut des sciences du sport de l'Université de Lausanne

de l'Université de Lausanne