

Optimal Cycling Strategies for two Cooperating Riders

Stefan Wolf

University of Konstanz Computer and Information Science Multimedia Signal Processing

Science & Cycling Caen, France, 30.06.2016

Powerbike Project

Goals

- Acquisition, analysis, and visualization of performance parameters in lab and field
- Realistic simulation of road cycling on real courses
- Optimization of pacing strategies
- Modelling of physiological parameters

Simulator

How to improve race performance?

- Pre-race improvements: Endurance training, Riding technique, Bike technology
- Pacing strategy

How to improve race performance?

- Pre-race improvements: Endurance training, Riding technique, Bike technology
- Pacing strategy

Strategies in practice

- Depend mainly on the expertise of the athlete and the trainer
- Common ground on simple courses

How to improve race performance?

- Pre-race improvements: Endurance training, Riding technique, Bike technology
- Pacing strategy

Strategies in practice

- Depend mainly on the expertise of the athlete and the trainer
- Common ground on simple courses

Goal

- Get an objective view on strategies.
- Use mathematical models and optimization.

How to improve race performance?

- Pre-race improvements: Endurance training, Riding technique, Bike technology
- Pacing strategy

Strategies in practice

- Depend mainly on the expertise of the athlete and the trainer
- Common ground on simple courses

Goal

- Get an objective view on strategies.
- Use mathematical models and optimization.

Strategies based on mathematical models

- Available for individual time trials
- Only few works with several riders

2 Modelling

Model for Bicycle Mechanics

Equilibrium of forces

2 Modelling

Model for Bicycle Mechanics

Equilibrium of forces

2-rider extension

Slipstream reduces air resistance

Model for Slipstream

Slipstream factor

Wind resistance: $F'_{air} = s(x_d)F_{air}$ Length of the bike (*l*): 1.8m Minimum tire distance (d_{min}) : 0.1m Reduction in sweet spot (γ) : 37%

Model for Slipstream

Slipstream factor

Wind resistance: $F'_{air} = s(x_d)F_{air}$ Length of the bike (*l*): 1.8m Minimum tire distance (d_{min}) : 0.1m Reduction in sweet spot (γ) : 37%

Model for Slipstream

Slipstream factor

Wind resistance: $F'_{air} = s(x_d)F_{air}$ Length of the bike (*l*): 1.8m Minimum tire distance (d_{min}): 0.1m Reduction in sweet spot (γ): 37%

Formula

$$s(x_d) = 1 - \gamma \exp(-\alpha(x_d)(x_d - (l + d_{\min}) - 0.1)^2)$$

$$\alpha(x_d) = -\frac{6 - 0.3}{2} \tanh(\epsilon(x_d - (l + d_{\min}) + 0.1)) + \frac{6 - 0.3}{2}$$

Critical power model

- Critical power P_C
- Anaerobic work capacity AWC
- Change in awc level: $awc(t) = P_C P(t)$

Critical power model

- Critical power P_C
- Anaerobic work capacity AWC
- Change in awc level: $awc(t) = P_C P(t)$

Morton's 3-parameter critical power model

- Maximum instantaneous power P_{M,inst}
- Change in awc level: $a\dot{w}c(t) = (P_{M,inst} P_C)\frac{P_C P(t)}{P_{M,inst} P(t)}$

 P_C

AWC

Critical power model

- Critical power P_C
- Anaerobic work capacity AWC
- Change in awc level: $awc(t) = P_C P(t)$

Morton's 3-parameter critical power model

- Maximum instantaneous power P_{M,inst}
- Change in awc level: $a\dot{w}c(t) = (P_{M,inst} P_C)\frac{P_C P(t)}{P_{M,inst} P(t)}$

Maximum power constraint

- Maximum experiment power P_{M,exp}
- Maximum power constraint: $P(t) \le P_C + (P_{M,exp} P_C) \frac{awc(t)}{AWC} =: P_m(t, awc(t))$

AWC

Critical power model

- Critical power P_C
- Anaerobic work capacity AWC
- Change in awc level: $awc(t) = P_C P(t)$

Morton's 3-parameter critical power model

- Maximum instantaneous power P_{M,inst}
- Change in awc level: $a\dot{w}c(t) = (P_{M,inst} P_C)\frac{P_C P(t)}{P_{M,inst} P(t)}$

Maximum power constraint

- Maximum experiment power P_{M,exp}
- Maximum power constraint: $P(t) \le P_C + (P_{M,exp} P_C) \frac{awc(t)}{AWC} =: P_m(t, awc(t))$

2-rider extension

depletion rate diminishes if AWC is full

AWC

2 Modelling

Optimization

Optimal control problem

Minimize the cost-function based on controls $P_1(t)$ and $P_2(t)$

J = T

subject to the dynamic constraints, boundary conditions

$$\begin{aligned} \dot{x}_{1}(t) &= & v_{1}(t) & x_{1}(0) &= & x_{1,0} & x_{1}(T) &= & x_{1,i} \\ \dot{x}_{d}(t) &= & v_{2}(t) - v_{1}(t) & x_{d}(0) &= & x_{d,0} & x_{d}(T) &\geq & 0 \\ \dot{v}_{i}(t) &= & F_{\mathsf{mech}}(v_{i}(t), x_{1}(t), x_{d}(t), P_{i}(t)) & v_{i}(0) &= & v_{i,0} \\ a\dot{w}c_{i}(t) &= & F_{\mathsf{phys}}(P_{i}(t)) & awc_{i}(0) &= & AWC_{i,0} \end{aligned}$$

and the path constraints

$$0 \le awc_i(t) 0 \le P_i(t) \le P_{m,i}(t, awc_i(t))$$

Numerical solver

- GPOPS II (RP Optimization Research LLC)
- SNOPT (Stanford Business Software Inc.)

3 Examples

Example 1

Riders parameters

parameter	rider 1	rider 2
P _C	300 W	300 W
AWC	25000 J	25000 J
P _{M,inst}	15000 W	15000 W
P _{M,exp}	1100 W	1100 W
Weight	80 kg	80 kg

Track parameters

- Length $x_f = 5 \text{ km}$
- Constant slope of 0 %

3 Examples

Example 1

Riders parameters

parameter	rider 1	rider 2
P _C	300 W	300 W
AWC	25000 J	25000 J
P _{M,inst}	15000 W	15000 W
P _{M,exp}	1100 W	1100 W
Weight	80 kg	80 kg

Track parameters

- Length $x_f = 5 \text{ km}$
- Constant slope of 0 %

Results

- Race-time coop: 6 min 31 sec
- Race-time rider 1: 6 min 54 sec (+5.8%)
- Race-time rider 2: 6 min 54 sec (+5.8%)

3 Examples

Example 1

Dynamics

Example 2

Riders parameters

parameter	rider 1	rider 2
P _C	300 W	350 W
AWC	25000 J	25000 J
P _{M,inst}	15000 W	15000 W
P _{M,exp}	1100 W	1100 W
Weight	80 kg	80 kg

Track parameters

- Length $x_f = 5 \text{ km}$
- Constant slope of 0 %

Results

- Race-time coop: 6 min 20 sec
- Race-time rider 1: 6 min 54 sec (+8.9 %)
- Race-time rider 2: 6 min 34 sec (+3.6 %)

Summary

Summary

- Model to simulate two riders
- Slipstream reduces air resistance by 30% in best position
- Race-time can be reduced by over 5% for equally trained riders
- Less trained athletes benefit from well trained colleagues

Summary

Summary

- Model to simulate two riders
- Slipstream reduces air resistance by 30% in best position
- Race-time can be reduced by over 5% for equally trained riders
- Less trained athletes benefit from well trained colleagues

Future Work

- Extend to more than two riders
- Apply to real world tracks
- Non-cooperative strategies

dvs Workshop Modelling in Endurance Sports

- University of Konstanz
- 11.9.2016 13.9.2016
- Invited speakers: Chris Abbiss, Jim Martin
- https://www.informatik.uni-konstanz.de/saupe/workshop2016

dvs Workshop Modelling in Endurance Sports

- University of Konstanz
- 11.9.2016 13.9.2016
- Invited speakers: Chris Abbiss, Jim Martin
- https://www.informatik.uni-konstanz.de/saupe/workshop2016

Thank you!