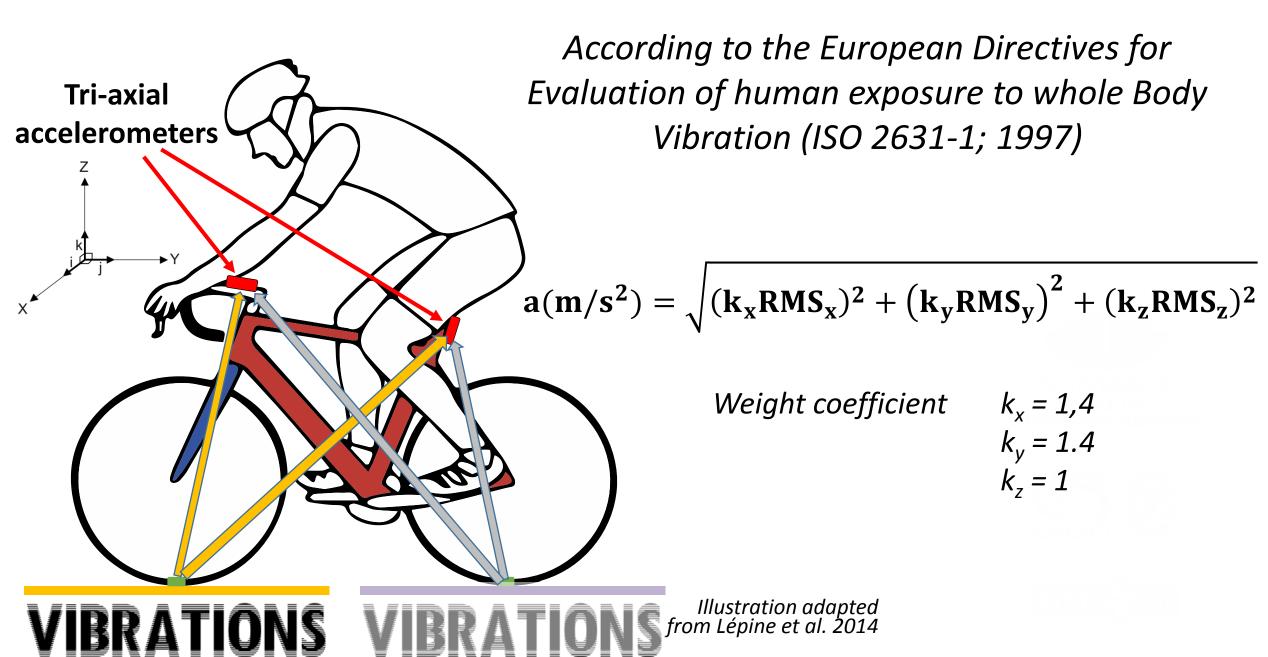
VIBRATION EXPOSURE ON COBBLESTONE SECTORS DURING PARIS-ROUBAIX : a single case study

SEBASTIEN DUC (PhD), F. PUEL & W. BERTUCCI

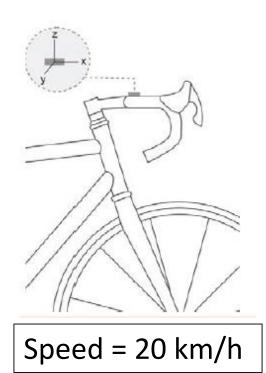
COEN.

Ű

sebastien.duc@univ-reims.fr


Groupe de Recherche En Sciences Pour l'Ingénieur

INTRODUCTION



Arpinar-Asvar et al. (J Sports Sci & Med, 2013)

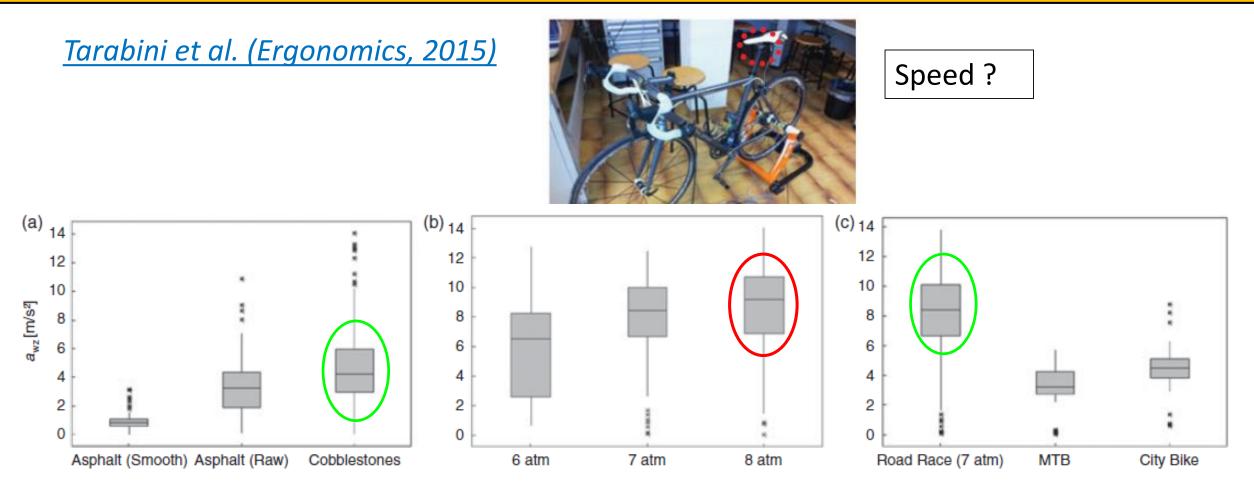
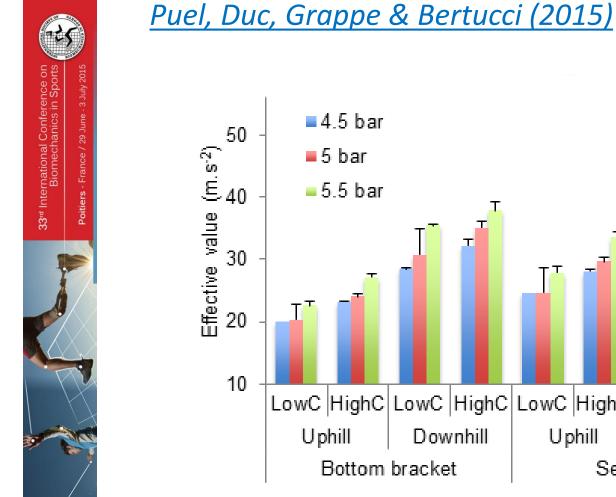
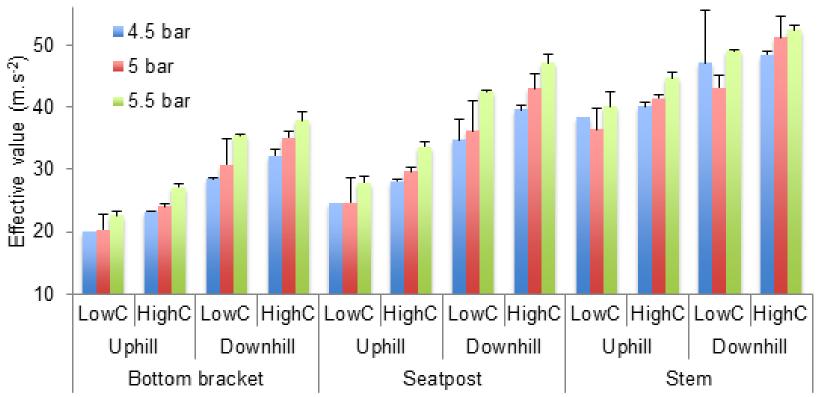

		Smooth	asphalt	Concre	te Stone	Rougl	h Road
	Stem Acceleration (m·s ⁻² rms)	x	z	x	z	x	z
	Subject 1	1.08	1.58	3.71	4.74	6.75	10.10
	Subject 2	1.89	2.22	4.14	5.19	7.60	9.37
MTB	Subject 3	1.75	2.56	4.14	7.04	6.23	10.76
	Subject 4	1.40	1.66	3.60	4.18	7.16	7.86
	Subject 5	1.55	2.37	3.30	5.30	6.00	10.17
	Mean	1.53	2.08	3.78	5.29	6.75	9.65
	SE	.32	.44	.36	1.07	.66	1.12
	Subject 6	2.84	3.21	10.69	9.97	16.24	19.12
	Subject 7	3.58	3.85	8.60	9.42	13.15	13.68
RB	Subject 8	3.69	4.43	9.54	11.12	18.31	27.31
	Subject 9	4.37	4.21	7.61	8.52	13.71	18.12
	Subject 10	3.08	3.38	10.25	11.75	18.06	23.58
	Mean	3.51	2.63	0.24	10.16	15.00	20.36
	SE	.59	.52	1.25	1.30	2.40	5.24
						2.40	\smile
				x 6)		

Table 2. Individual un-weighted rms acceleration values.

- Higher RMS with road bikes vs MTB
- ➢ RMS ↗ with road roughness


WHICH FACTORS DETERMINE VIBRATION EXPOSURE?

 \succ RMS \nearrow with tyre pressure



WHICH FACTORS DETERMINE VIBRATION EXPOSURE?

- RMS *¬* with speed
- RMS_{stem} > RMS_{seatpost} > RMS_{bottom bracket}

Speed ~31 km/h (downhill) ~ 22 km/h (uphill 3-4%)

□ To measure vibrations at the stem and at the seatpost in "Paris-Roubaix"

cobblestone sectors

□ **To quantify vibration levels** for the whole body (seatpost) and hand-arm system (stem) according to the European Directives (ISO 2631)

To compare vibration exposure in road cycling on cobblestones with standards for workers

METHOD / Design

 \Box One competitive male cyclist (1.80 m; 68 kg) participated to "Cycling for All Event" of UCI – 139 km race

□ 18 cobbles sectors = 31 km (22% total race distance)

→ data analysed over **15 cobblestone sectors**

3 ** 6 *** 4 **** 2 *****

km	Départ/Start: Roubaix	
29	Rumegies 📎	0
46		Muddy !
52	Want à l'étaines ***	Crash !
57	Hornaing	0
58	Hornaing à Wandignies ***	k
65	Warlaing à Brillon ***	
69	Tilloy à Sars-et-Rosières ***	*
75	Beuvry à Orchies ***	
80	Orchies ***	
86	Auchy à Bersée ****	
91	Mons-en-Pévèle *****	
97	Mérignies à Avelin **	
100	Pont-Thibault à Ennevelin **	*
106	Templeuve ·	0
107	Templeuve - Moulin de Vertain **	
113	Cysoing à Bourghelles ***	
116	Bourghelles à Wannehain **	*
118	Camphin-en-Pévèle ****	
120	Carrefour de l'Arbre *****	
123	Group **	Too smooth !
130	Willems à Hem **	
400	Méladroma de Daubaix	

Muddy !

7

METHOD / Material

Tri-axial HIKOB- Fox accelerometer	Technical characteristics of the bike			
	Frame	Carbon fact 8 K Roubaix (Specialized)		
	Fork	Carbon fact 8 K Roubaix (Specialized)		
	Transmission	Centaur 12 x 25, 10 speeds (Campagnolo)		
	Crankset	Chorus Ultratorque 34 x 50 (Campagnolo)		
	Breaks	Centaur Aluminium (Campagnolo)		
	Wheels	RR.1.1. Aluminium <i>(DT Swiss)</i> Rim height : 21 mm		
	Tyres	Roubaix Pro 7 00-25c (Specialized) 5 bar pressure		
	Handlebar	WC Aluminium (Ritchey) Gel pads tape Roubaix (Specialized)		
	Stem	World Cup Carbon (Massi)		
Garmin EDGE 800 Hub PRO SL+ PowerTap	Saddle	Phenom (Specialized)		
	Pedals	Xpresso 2 (Time)		
	Weight	8.2 kg		

fsampling 1HZ

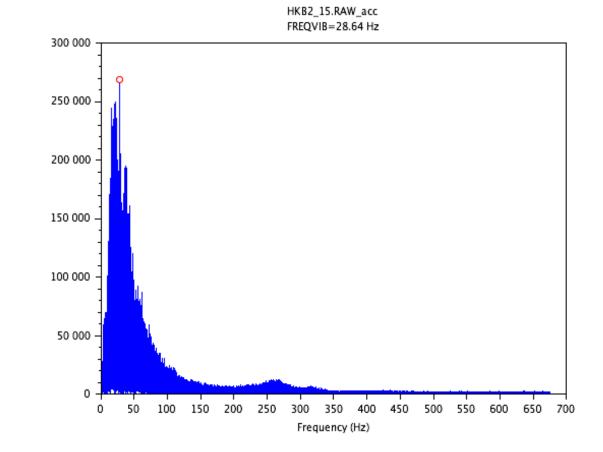
f sampling 2000 HZ

METHOD / Measures

- Power Output (PO, W)
- Pedalling cadence (PC, rpm)
- Heart Rate (HR, bpm)

Speed (km/h)

 \rightarrow data analysis only on Z axis



- principal vibration frequency (f_{vib}, Hz)
 - Spectral analysis (FFT)

Effective value (RMS, m/s²)

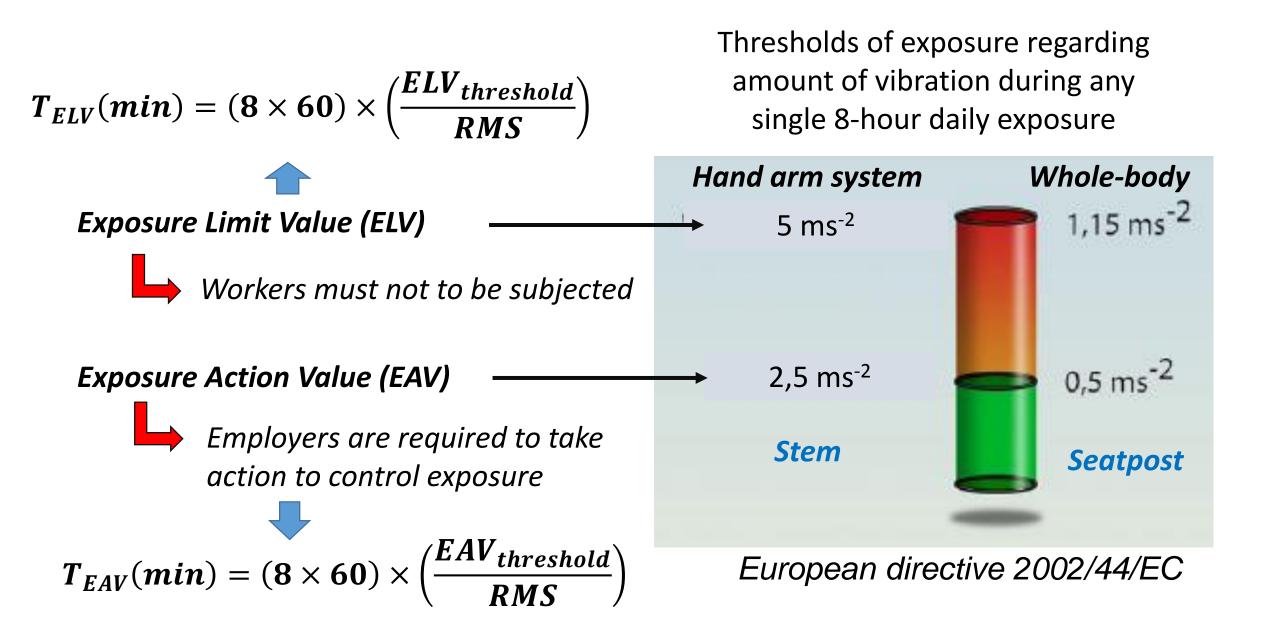
Procedure ISO 2631-1 (1997)

$$\mathbf{RMS}_{z} = \left[\frac{1}{T}\int_{0}^{T}\mathbf{a}_{z}^{2}(t).\,dt\right]^{\frac{1}{2}}$$

Acceleration equivalent level (A(8), m/s²)

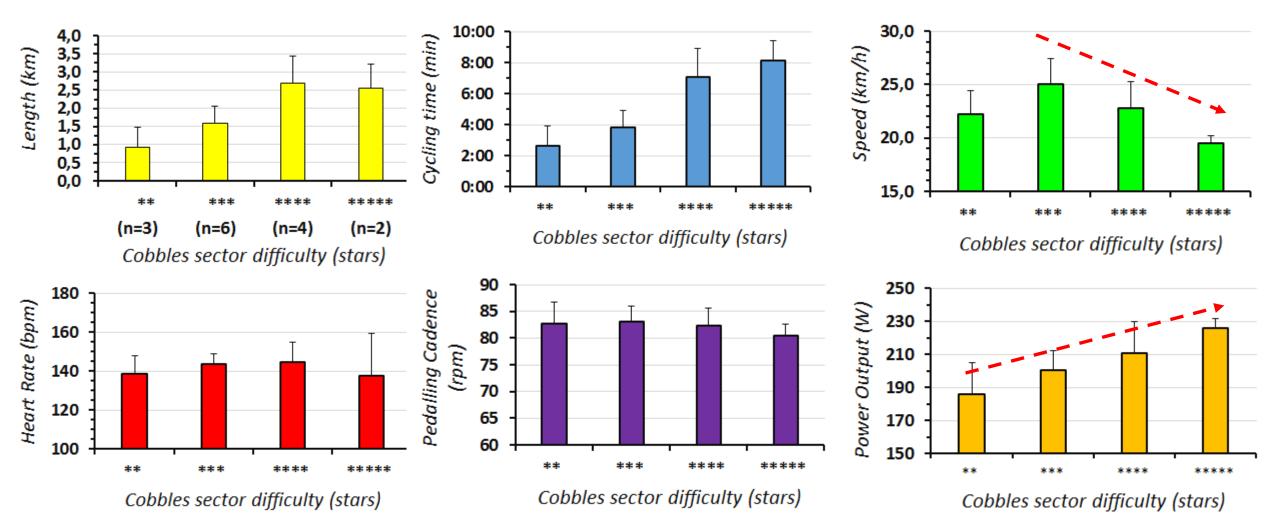
represent the equivalent acceleration energy as it varies over a working day

$$\mathbf{A(8)} = \sqrt{\frac{1}{\mathbf{T}_0} \sum_{i=1}^n RMS_i^2 \times T_i}$$

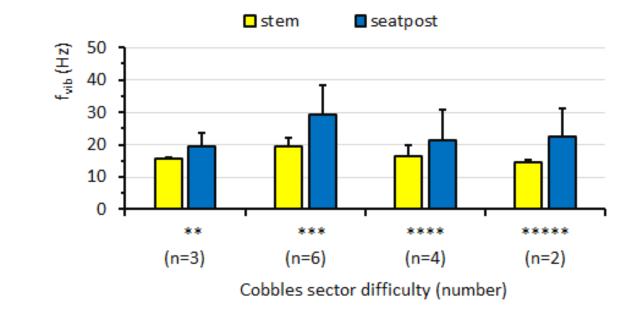

Vibration Dose Value (VDV, m/s^{1.75})

More sensible to peak acceleration $VDV = \left[\sum_{VDV} VDV^{4}\right]^{\frac{1}{4}} \rightarrow C$ Ti = cobblestone sector time (h) $T_0 = reference time (8h)$

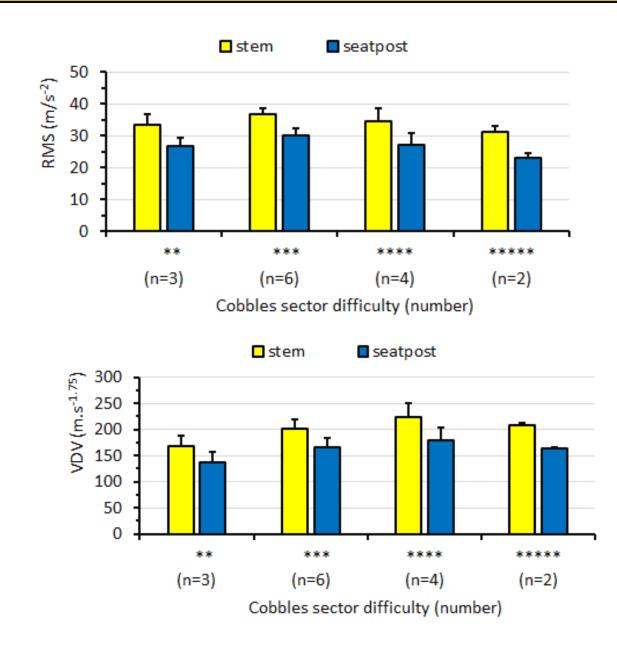
$$VDV = \left[\int_{0}^{T} a_{z}^{4}(t) dt \right]^{\frac{1}{4}}$$


 $VDV_{total} = \left[\sum_{i} VDV_{i}^{4}\right]^{\overline{4}}$ \rightarrow Cumulative measurement (dose) of the vibrations encountered during all cobblestone sectors (i)

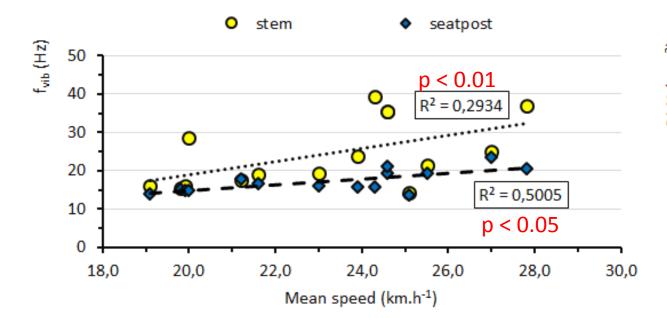
RESULTS

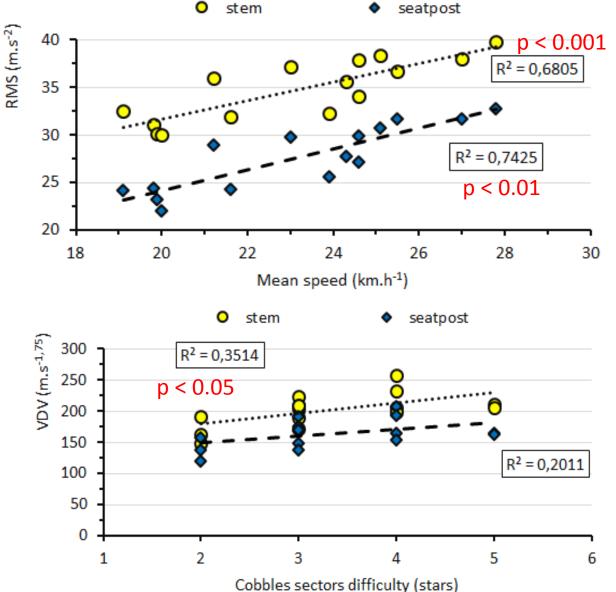

PO increased on the hardest cobbles sectors while speed decreased

Lower mechanical efficiency ?



Higher Vibration frequency at seatpost

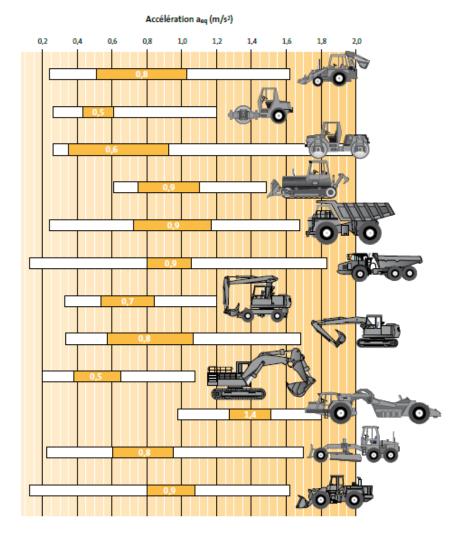

Higher RMS and VDV at stem



RESULTS

Significant positive correlations between:

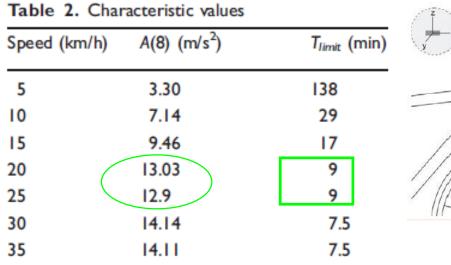
- Speed & Vibration frequency
- Speed & RMS
- cobbles sectors difficulty & VDV

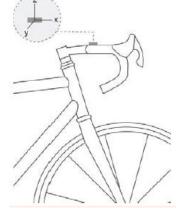


RESULTS

1	6
1	-0

	Seatpost	Stem
Acceleration Equivalent Level (A8)	10.8 m.s ⁻²	13.7 m.s ⁻²
Vibration Dose Value (1h15)	330 m.s ^{-1,75}	406 m.s ^{-1,75}
Time to reach Exposure Action Value (min)	0.2 ± 0.1	2.5 ± 0.5
Time to reach Exposure Limit Value (min)	0.9 ± 0.2	10.2 ± 1.9


for all heavy plant : A (8) < 2 m/s^2



		Seatpost	Stem	
Acceleration Equivalent Level (A8)		10.8 m.s ⁻²	13.7 m.s ⁻²	
Vibration Dose Value (1h15)		30 m.s ^{-1,75}	406 m.s ^{-1,75}	
Time to reach Exposure Action Value (min)		0.2 ± 0.1	2.5 ± 0.5	
Time to reach Exposure Limit Value (min)		0.9 ± 0.2	10.2 ± 1.9	

Largely inferior to the cobbles sector

mean time (5 ± 2 min)

Chiementin & Bertucci (Journal of Vibration & Control, 2012)

	VDV_z (m/s ^{1.75})	T(EAV) (min)	T(ELV) (min)
Kitesurf	65 (1 h)	4	20
Alpine ski	95 (2h)	1.5	8
Snowboard	210 (2h)	3	17
Road bike	50 (2h)	7	40
Mountain bike	25 (2h)	15	80
City bike	26 (2h)	13	70

Tarabini et al. (Ergonomics, 2015)

□ Vibrations measured over 15 cobblestone sectors of Paris-Roubaix in

"racing" conditions were characterised by

Highest vibration frequency at seatpost
Highest vibration level (RMS) at stem

 \nearrow with speed

Professional road cycling are probably subjected to higher vibration level !

Ubration exposure increased with cobblestone sector difficulty and largely

exceeded the daily vibration dose encountered by workers

Need to take action to limit exposure for health by optimizying bicycle-rider interface

SEBASTIEN DUC (PhD), F. PUEL & W. BERTUCCI

sebastien.duc@univ-reims.fr

Groupe de Recherche En Sciences Pour l'Ingénieur