No differences in gross efficiency between dominant and nondominant legs during one-legged counterweighted cycling

Arthur Henrique BOSSI¹, Leonardo PERTENCE², Pedro LIMA², Guilherme MATTA², Jorge Perrout de LIMA², James HOPKER¹

¹ School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, Kent, UK.
 ² Faculdade de Educação Física e Desportos, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.

Arthur Henrique Bossi

 $VO_2 = QO_2 \times C_{(a-v)}O_2$

Wasserman et al. 1967

J Appl Physiol (1985). 2011 May;110(5):1248-55. doi: 10.1152/japplphysiol.01247.2010. Epub 2011 Feb 17.

Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.

Abbiss CR¹, Karagounis LG, Laursen PB, Peiffer JJ, Martin DT, Hawley JA, Fatehee NN, Martin JC.

J Physiol. 2016 Mar 15;594(6):1741-51. doi: 10.1113/JP271229. Epub 2016 Jan 19.

Symmorphosis and skeletal muscle VO2 max : in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human.

<u>Gifford JR</u>^{1,2}, <u>Garten RS</u>^{1,3}, <u>Nelson AD</u>^{1,3}, <u>Trinity JD</u>^{1,3}, <u>Layec G</u>^{1,3}, <u>Witman MA</u>^{1,3}, <u>Weavil JC</u>^{1,2}, <u>Mangum T</u>^{1,2}, <u>Hart C</u>^{1,2}, <u>Etheredge C</u>^{1,2}, <u>Jessop J</u>⁴, <u>Bledsoe A</u>⁴, <u>Morgan DE</u>⁴, <u>Wray DW</u>^{1,2,3}, <u>Rossman MJ</u>², <u>Richardson RS</u>^{1,2,3}.

Eur J Appl Physiol. 2014 May;114(5):961-8. doi: 10.1007/s00421-014-2830-0. Epub 2014 Feb 4.

Cardiovascular responses to counterweighted single-leg cycling: implications for rehabilitation.

Burns KJ¹, Pollock BS, Lascola P, McDaniel J.

J Strength Cond Res. 2015 Jun;29(6):1534-41. doi: 10.1519/JSC.000000000000905.

Comparison of kinetics, kinematics, and electromyography during single-leg assisted and unassisted cycling.

Bini RR¹, Jacques TC, Lanferdini FJ, Vaz MA.

Gross Efficiency

MORPHOLOGICAL COMPONENTS

J Electromyogr Kinesiol. 2010 Dec;20(6):1230-6. doi: 10.1016/j.jelekin.2010.07.013. Epub 2010 Aug 21.

Does leg preference affect muscle activation and efficiency?

Carpes FP¹, Diefenthaeler F, Bini RR, Stefanyshyn D, Faria IE, Mota CB.

J Electromyogr Kinesiol. 2010 Dec;20(6):1230-6. doi: 10.1016/j.jelekin.2010.07.013. Epub 2010 Aug 21.

Does leg preference affect muscle activation and efficiency?

Carpes FP¹, Diefenthaeler F, Bini RR, Stefanyshyn D, Faria IE, Mota CB.

Ettema and Loras 2009

• To investigate whether cycling gross efficiency is affected by using either the dominant or the non-dominant leg during counterweighted cycling.

Methods

11 competitive cyclists

- 31.0 ± 7.7 years 70.6 ± 10.8 kg 175.8 ± 8.1 cm
 64.0 ± 9.0 ml·kg⁻¹·min⁻¹
- 1st: Anthropometry Waterloo Footedness Questionnaire GXT
 2nd–7th: One-legged cycling

```
D and ND legs
60 and 100 W
60, 75 and 90 rpm
NCW, CW<sub>2.5</sub> and CW<sub>5</sub>
```

18 min – each cadence for 6 min

2 bouts per session (one for each leg) – 40-min rest
 Standard road bike + SRM + Computrainer

Data analysis

• Gas analysis: last 3 min (VO2000, Medgraphics, St. Paul, USA)

GE% = (work accomplished/energy expenditure) × 100

work accomplished(kcal.min-1) = power output(W) × 0.01433
 calorific equivalent of O₂ based on Peronnet and Massicotte (1991)

Shapiro-Wilk – data normality

0

3-way RM ANOVA, with Bonferroni pairwise comparisons if P≤0.05

Results

No significant main effect of the leg
60 W (F=0.024; P=0.879)

100 W (F=3.617; <u>P=0.086</u>)

Significant main effect of the cadence

60 W (F=40.213; P<0.001)
 100 W (F=54.509; P<0.001)

90 × 60 rpm (P<0.001) 90 × 75 rpm (P<0.001)

Significant main effect of the counterweight

100 W (F=3.879; P=0.038)
 60 W (F=2.439; P=0.115)

Significant interaction counterweight × cadence 60 W (F=2.843; P=0.038)

Results

- The use of either the D or the ND leg during one-legged cycling does not systematically affect cycling GE
- Some individuals present wide variation in GE (>0.6%) between legs Noordhof et al. 2010
- Higher cadences decrease GE
- The optimal counterweight for one-legged cycling might vary across conditions and subjects
- As power output increase, the counterweight size seems to be of lesser importance

Arthur Henrique Bossi ⊡ asnb@kent.ac.uk

ResearchGate Search for publications, researchers, or questions

Discover by subje

Arthur Henrique Bossi University of Kent, Canterbury Medicine MSc

Q

ıll 6.25

Overview Contributions Info Stats

Arthur H. Bossi @ahbossi

Pursuing a PhD

Q United Kingdom

i Participa desde junho de 2009

17 Fotos e vídeos