

Individualising training intensity to reduce inter-individual variability in training response in trained cyclists.

Ciaran O'Grady^{1*} (Twitter: @Racing_Cog), James G. Hopker¹ (Twitter: @JamesHopker).

1 Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, UK.

* Corresponding author:

Ciaran O'Grady,

School of Sport and Exercise Sciences,

University of Kent,

Chatham Maritime,

Kent,

UK,

Email: cmao3@kent.ac.uk.

Keywords: training, individualisation, high-intensity, cycling, individual variability.

Background: Training to improve endurance performance commonly results in large interindividual variability (IIV) in response (Bouchard *et al.* [1998]. *Medicine and Science in Sports and Exercise, 30(2),* 252–258; Mann *et al.* [2014]. *Sports Medicine, 44,* 1113–1124). A novel perspective to this issue centers on the differences in physiological response at set percentages of maximal performances; commonly used to prescribe training (Coyle *et al.* [1988]. *Journal of Applied Physiology, 64(6),* 2622–2630). By establishing individual profiles of performance using a Power Law (PL), training intensity could be prescribed on an individualised basis (García-Manso *et al.* [2012]. *Journal of Theoretical Biology, 300,* 324– 329).

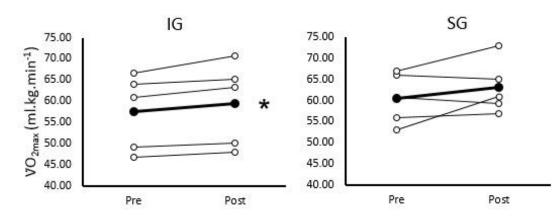
Purpose: This investigation sought to determine whether using a PL could reduce IIV in $\dot{V}O_{2max}$ response to training compared to using a standardised method.

Methods: Two groups of male cyclists completed 12 high intensity training (HIIT) sessions over 4 weeks. Training intensity was prescribed using PL models in the individualised group (IG; n=5, $\dot{V}O_{2max} = 57.50 \pm 9.02$ mL.kg.min⁻¹) and set percentages of $\dot{V}O_{2max}$ in the standardized group (SG; n=5, $\dot{V}O_{2max} = 62.17 \pm 4.45$ mL.kg.min⁻¹). A $\dot{V}O_{2max}$ test and performance time trial were completed pre- and post-training. PL's were established using maximal efforts of 12, 7, and 3 minutes (Galbraith *et al.* [2014]. *Journal of Sports Physiology and Performance, 9(6),* 931–935). Training sessions consisted of 3 sets of 10 repetitions of 30 seconds work and 30 seconds recovery, with 5 minutes active recovery between sets. Statistical analyses were conducted using IBM SPSS Statistics 22, with between- and within-group comparisons completed using independent and paired samples t-tests, respectively. Variability was analysed using log-transformed coefficients of variation and Bland-Altman plots.

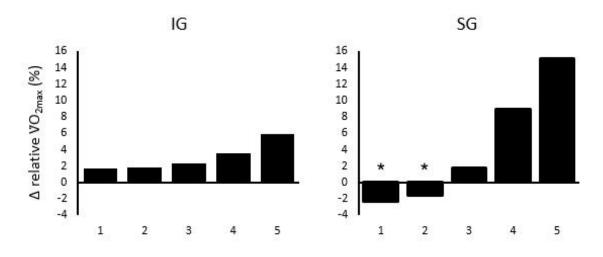
Results: \dot{VO}_{2max} was shown to have significantly increased in IG from 57.50 ± 9.02 mL.kg.min⁻¹ to 59.36 mL.kg.min⁻¹ following 4 weeks of HIIT training prescribed using a PL (P < 0.05). \dot{VO}_{2max} did not significantly improve in SG (P > 0.05; *Figure 1*). Intra-class correlation coefficients (ICC) showed that variability in \dot{VO}_{2max} response in both IG and SG was low, but significantly stronger correlations were observed in IG (P < 0.001) than in SG (P < 0.05). Individual \dot{VO}_{2max} response profiles (*Figure 2*) indicate wider variation in response in SG, with two participants showing reduced \dot{VO}_{2max} , and a more consistent positive response in IG. Bland-Altman plots identify variance in \dot{VO}_{2max} response of + 4.39 ml.kg.min⁻¹ to - 0.69 ml.kg.min⁻¹ in IG and from + 8.86 ml.kg.min⁻¹ to - 6.23 ml.kg.min⁻¹ in SG (*Figure 3*).

Conclusion: The results of this study suggest that individualised HIIT training prescribed using a PL can reduce the IIV in $\dot{V}O_{2max}$ response to training when compared to a standardised approach. This indicated that prescribing training using a PL model can result in consistent and predictable responses, useful for research, clinical, and applied purposes.

References


Bouchard, C., Daw, E., Rice, T., Perusse, L., Gagnon, J., Province, A., ... Wilmore, J. (1998). Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Medicine and Science in Sports and Exercise, 30(2), 252–258.

Coyle, E., Coggan, A., Hopper, M., & Walters, T. (1988). Determinants of endurance in well-trained cyclists. Journal of Applied Physiology, 64(6), 2622–2630.


Galbraith, A., Hopker, J., & Lelliott, S. (2014). A Single-Visit Field Test of Critical Speed. International Journal of Sports Physiology and Performance, 9(6), 931–935.

García-Manso, J. M., Martín-González, J. M., Vaamonde, D., & Da Silva-Grigoletto, M. E. (2012). The limitations of scaling laws in the prediction of performance in endurance events. Journal of Theoretical Biology, 300, 324–329.

Mann, T., Lamberts, R., & Lambert, M. (2014). High responders and low responders: Factors associated with individual variation in response to standardized training. Sports Medicine, 44, 1113–1124.

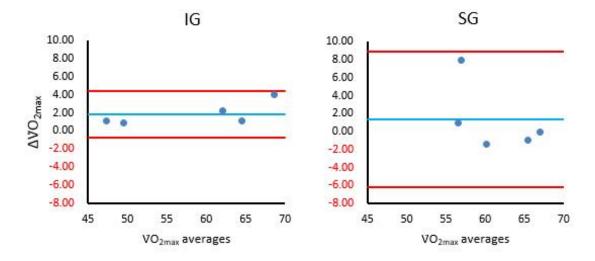


Figure 1 - VO2max response, identifying both inter-individual variability in response and mean response following 4 weeks of HIIT training. Open circles identify individuals and closed circles identify mean response. * ICC significance varies between IG and SG (P < 0.001 vs. P < 0.05, respectively).

Figure 2 - Individual variability in relative \dot{VO}_{2max} response (% change) to 4 weeks of HIIT training prescribed in an individualized (IG) or standardized manner (SG). *, adverse-responders ($\Delta\dot{VO}_{2max} < 0\%$).

Figures

Figure 3 - Bland-Altman Plots. Blue line represents mean change, with red lines representing 95% CI.