Modeling Intermittent Cycling Performance in Hypoxia using the Critical Power Concept

Nathan Townsend^{1,2}, Samantha Shearman¹, Phillip Skiba³, Dan Dwyer¹

¹Centre for Exercise & Sport Science, Deakin University, Geelong, Australia ²Athlete Health and Performance Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar ³Dept. of Sports Medicine, Advocate Lutheran General Hospital, Park Ridge IL, USA

Critical Power Concept

Definitions

- *Critical Power:* the highest work rate that can be sustained without a progressively increasing nonaerobic contribution (Morton, 2006).
- *W':* the total amount of work that can be performed above critical power until the limit of tolerance (Jones et al., 2008).

P(t) = W' / time + CP

Critical Power Concept: Morton's 2-Parameter Hydraulic Model

ASPETAR

Fig. 1 The CP concept as a hydraulic model

The "Work-Balance" (W'_{BAL}) Model (Skiba et al., 2012)

$$W'_{BAL} = W' - \int_0^t (W'_{exp}) (e^{-(t-u)/\tau}w')$$

W' = total work above critical power W'_{BAL} = balance of W' remaining at any given time (t) W'_{exp} = work expended during interval where P > CP t - u = time interval during which P > CP $\tau_{W'}$ = recovery time constant for W'_{bal} D_{CP} = difference between CP and recovery power

Assumptions

- 1. Expenditure of W' occurs when P > CP
- 2. Reconstitution of W' occurs when P < CP
- 3. Reconstitution of W' follows a predictable exponential time course

$$\tau_{W'} = 546 \cdot e^{(-0.1 \cdot D_{CP})} + 316$$

Skiba et al., 2014

Field Validation of Work-Balance Model

(Skiba et al., 2014)

- Receiver-operator characteristic analysis (sensitivity vs specificity)
- Threshold value of W'_{BAL} = 1.5 kJ to distinguish between "fatigued / non-fatigued"

Effect of Hypoxia on CP + W'

- CP significantly reduced
- No sig. differences to mean W', but wide variability related to ΔCP

Influence of moderate hypoxia on tolerance to high-intensity exercise

J. Dekerle · P. Mucci · H. Carter Eur J Appl Physiol (2012) 112:327–335

Influence of Hypoxia on the Power-duration Relationship during High-intensity Exercise

L. Parker Simpson, A. M. Jones, P. F. Skiba, A. Vanhatalo, D. Wilkerson (IJSM, 2015)

Aims & Hypotheses

• Primary research aim:

To examine the effect of hypoxia on the efficacy of the W'_{BAL} model during high-intensity intermittent cycling

• Hypotheses:

- No difference in W'_{BAL} model results between normoxia and hypoxia when CP + W' is measured under same environmental conditions
- 2. W'_{BAL} overestimated if normoxic CP + W' used to model performance in hypoxia

Methods

Subjects

- N = 11 trained, male cyclists
- Age: 27 ± 6.6 yr
- Height: 179 ± 7.5 cm
- Weight: 78.0 ± 7.1 kg
- VO_{2max}: 4.79 ± 0.56 L.min⁻¹

Conditions

- Normoxia (FiO₂ = 0.2093)
- Hypoxia (FiO₂ = 0.155 ≈ 2450m)

Design

Counter-balanced, randomized, single blinded

Statistics

Student's t-tests

Methods

Procedures

- 1. VO_{2max} & 3min all-out test (3AOT) famil.
- 2. $VO_{2max} \rightarrow 30min recovery \rightarrow 3min AOT *$
 - VO_{2max} (30 W.min⁻¹ ramp)
 - CP + W'
- 3. Repeat lab visit 2
- 4. Intermittent TTe test (60s / 30s @ 4MMP)
- 5. Repeat lab visit 4

Analysis

- CP + W' results from 3AOT \rightarrow W'_{BAL} model
- CP + W' in NORM \rightarrow W'_{BAL} model in HYPO (N+H)
- W'_{BAL} at task failure: W'_{BALtf}
- Minimum W'_{BAL} : W'_{BALmin}

*Constantini et al., 2014

Results: VO_{2max} and 3min All Out Test

VO_{2max} ramp

NORM

VO_{2max}: 4.79 ± 0.56 L.min⁻¹

HYPO

VO_{2max}: 3.93 ± 0.47 L.min⁻¹* 18% decrease in VO_{2max}

3 min AOT

NORM

 VO_{2pk} : 4.83 ± 0.57 L.min⁻¹ CP: 353 ± 46 W W': 12.6 ± 4.1 kJ

ΗΥΡΟ

VO _{2pk} :	3.85 ± 0.48 L.min ⁻¹				
CP:	319 ± 49 W *				
W':	13.3 ± 5.3				

10% decrease in CP

*Significantly different to NORM (P < 0.001)

Figure 1: Mean (SD) power (W) during 3AOT in normoxia and hypoxia

Results: Work-Balance Model

Table 1: W'_{BAL} model results for the intermittent test. Mean ± SD

	NORM	НҮРО	N + H	
Time _{tf} (s)	1057 ± 261	860 ± 173*	-	
Work _{tot} (kJ)	287 ± 69	219 ± 51*	-	
τ _{w'} (s)	337 ± 9	347 ± 12*	-	
W' _{BALtf} (kJ)	2.0 ± 0.9	1.5 ± 0.8	8.4 ± 3.2 [#]	
W' _{BALmin} (kJ)	1.7 ± 0.9‡	1.3 ± 0.8	8.3 ± 3.2 [#]	
Work _{tot} >CP (kJ)	35.0 ± 14.5	32.8 ± 17.4	12.2 ± 9.1 [#]	

* significantly different to NORM (P < 0.01)

[#] significantly different to HYPO (P < 0.001)

 \pm significantly different to W'_{BALtf} (P < 0.05)

Results: Work-Balance Model

Figure 2: Modeled W'_{BAL} depletion and reconstitution for one subject in NORM, HYPO, and in hypoxia using normoxia derived model inputs (N+H). Light grey bars indicate work and recovery intervals. P4 indicates the power output predicted to result in exhaustion in 4 min. Note the recovery power output (20 W) remained the same across each condition

Results: Work-Balance Model (modified)

- Modified CP defined as minimum 30 s rolling average power in 3AOT NORM
 - EP = 353 ± 46 W ; W' = 12.6 ± 4.1 kJ
 - CP = $347 \pm 45 \text{ W}^*$; W' = $13.4 \pm 3.9 \text{ kJ}^*$ (P < 0.05)

Table 2: Modified W'_{BAL} model results for the intermittent test. Mean ± SD

	NORM		НҮРО		N + H	
	EP	СР	EP	СР	EP	СР
Time _{tf} (s)	1057 ± 261	_	860 ± 173*	-	_	_
Work _{tot} (kJ)	286.8 ± 69.1	_	219.0 ± 50.5*	-	_	_
τ _{w'} (s)	337 ± 9	339 ± 9†	347 ± 12*	346 ± 12*	_	-
W' _{BALtf} (kJ)	2.0 ± 0.9	1.5 ± 0.9†	1.5 ± 0.8	1.4 ± 0.7	8.4 ± 3.2 [#]	7.9 ± 3.4†#
W' _{BALmin} (kJ)	1.7 ± 0.9‡	1.1 ± 0.9†‡	1.3 ± 0.8	1.2 ± 0.6	8.3 ± 3.2 [#]	7.8 ± 3.4†#
Work _{tot} >CP (kJ)	35.0 ± 14.5	39.0 ± 13.9†	32.8 ± 17.4	34.2 ± 15.8	12.2 ± 9.1 [#]	15.5 ± 9.1 ^{+#}

* significantly different to NORM (P < 0.01). * significantly different to HYPO (P < 0.001). * significantly different to EP (P < 0.05). * significantly different to W'_{BALtf} (P < 0.05)

Summary and Conclusions

- The W'_{BAL} model behaves similarly in hypoxia (≈2450m) and normoxia only when CP + W' are tested under the same environmental conditions as performance
- An overestimation of CP (with little change to W') leads to underestimation of time constant \rightarrow overestimation of W'_{BAL} at the point of task failure
 - W' depletes more slowly when P > CP
 - W' recovers faster when P < CP

Results: Pearson Correlation

Figure 2: Linear regression between Δ CP (W) and ramp test Δ VO_{2peak} (L·min⁻¹), where Δ denotes HYPO – NORM. Dotted lines indicate 95% confidence intervals.

Figure 3: Linear regression between Δ CP and Δ W', where Δ denotes HYPO - NORM. Dotted lines indicate 95% confidence intervals.

