Power-velocity curve: relevance of the SRM Ergometer for simulated cycling performance and constant duration tests

Albert Smit¹, Felix Wolbert² and Florentina J. Hettinga³

¹ AlbertWOT, Hilversum, the Netherlands

² Haagse Hogeschool, Den Haag, the Netherlands

³ University of Essex, Colchester, Great Britain

Introduction

Performance capacity

Field data

Lab

Training and race data

Field tests

Tests

Power Profile and Critical Power

 $P = W'/T_{lim} + CP$

Ergometer time trial

- Laboratory setting
 - Valid and reliable (Currell and Jeukendrup 2008)
 - Poor agreement between lab and field time trials (Smith, Davison et al. 2001)(Jobson, Nevill et al. 2008)
- Free choice of gear ratio
- Non-linear relationship air-friction and velocity ?
- Changes in kinetic energy
- SRM ergometer
 - "Open End Test"
- Goal: to determine the relationship between mechanical power output and the velocity in the SRM ergometer and compare this with cycling on a velodrome.

Methods: Ergometer test

- SRM Ergometer
 - "Open End Test"
 - 2 Hz
 - Power output
 - Velocity
- Dynamic calibration rig
 - 60-160 rpm, 10 rpm/step
 - Rohloff nave gears 7-12

Methods (2): Field test

- Field test
 - Indoor velodrome (250 m)
 - Air density 1.20 kg.m³
- 2 Elite track pursuit cyclist
 - Body mass + bike = 89,3 kg (standard position)
 - Body mass + bike = 98.1 kg (aero position)
- 6 velocities
 - 2 laps
 - 30-55 km/h
- SRM 7 track system (2 Hz)

Methods (3): Analysis

- Trend lines and coefficients of determination
- Predicted power output at fixed speeds (25-60 km)
- Pearson product-moment correlation
- Absolute and relative differences

Results

Results (2)

Velocity (km/h)	Power output SRM Ergometer (W)	Power output standard position (W)	Power output aero position (W)	Difference SRM Ergo - standard (%)	Difference SRM Ergo - aero (%)
25	89	80	78	11.3	13.7
30	137	126	122	9.0	12.3
35	199	185	179	7.1	11.2
40	274	259	248	5.5	10.2
45	363	348	332	4.1	9.3
50	467	454	430	2.9	8.5
55	586	576	544	1.8	7.8
60	722	717	674	0.8	7.2

Discussion

- SRM "Open End Test" mode = Non-linear relationship between power and velocity(Power equation)
- $P = 0.5 \rho Ap Cd v^3 + \mu N v$
- ≈ c v^{2.5} (our field measurements)
- SRM ergometer: $P = 0.04 \text{ v}^{2.4}$
- SRM Ergometer improved: P ≈ 0.025 v^{2.5}
- One size fits all
- Difference SRM Ergometer less with standard position

Discussion (2)

- Time trial studies:
 - 4-8% differences in velocity between road en lab (Jobson, Nevill, George, Jeukendrup, & Passfield, 2008; Jobson et al., 2007)
 - Kingcycle ergometer (wind-braked)
 - Body size:
 - Road speed (km/h) = lab speed (km/h) + 24.9 0.0969 m (kg) 10.7 h (m)
- Racermate Velotron
 - Body weight
 - Drag Factor
- Free University Amsterdam Ergometer
 - Body weight
 - Height
 - Rolling coefficient
 - Drag coefficient

Conclusions

- SRM Ergometer in "Open End Test"
 - Non-linear breaking algorithm
 - Power trend line between power output and velocity
- Real world cycling on a velodrome
 - Power trend line between power output and velocity
- SRM Ergometer overestimates power output at given speed
 - Difference is less in standard position
- Body size and bike postion will determine differences between ergometer and real world cycling
- SRM Ergometer "Open End Test" improved by input of
 - Body size (weight and height)
 - Bike position

Acknowledgements

www.albertwot.nl