

A quantitative flow visualization technique for on-site sport aerodynamics optimization

A. SciacchitanoG. CaridiF. Scarano

a.sciacchitano@tudelft.nl

Aerodynamics Definition

Study of the dynamics of air, especially when interacting with solid objects

When a solid body is moving through a fluid aerodynamic forces (lift and drag) and moments are produced

 V_{∞}

Aerodynamic investigation approaches

Numerical investigation (computational fluid dynamics, CFD)

Numerical solution of the flow equations (Navier-Stokes equations)

Experimental investigation

Measurement in wind tunnel to reproduce the flow conditions

Aerodynamic investigation approaches

Numerical investigation (computational fluid dynamics, CFD)

Numerical solution of the equations of motion (Navier-Stokes equations)

Experimental investigation

Measurement in wind tunnel to reproduce the flow conditions

Particle Image Velocimetry (PIV) Working principle

- Small particles in the flow
- Illumination provided by laser
- Images recorded by a camera
- Flow velocity extracted from the particles displacement

Example of PIV: Jet flow Image 1

6

Example of PIV: Jet flow Image 2

Axial velocity component

Cylinder diameter D	7 cm
Free-stream velocity $V_{\scriptscriptstyle \infty}$	25.6 m/s
Reynolds number Re _D	1.2 × 10 ⁵
Measurement domain	356 × 269 mm ²
Spatial resolution	0.97 vector/mm

Tomographic PIV Velocity field in a 3D volume

- 3 or more cameras required
- Additional step: reconstruction of the volume
- Output: u(x,y,z), v(x,y,z) and w(x,y,z): 3 velocity components in a 3D domain

Tomographic PIV Velocity field in a 3D volume

- 3 or more cameras required
- Additional step: reconstruction of the volume
- > Output: u(x,y,z), v(x,y,z) and w(x,y,z): 3 velocity components in a 3D domain

HELIUM-FILLED SOAP BUBBLES (HFSB) Large-scale tomo-PIV

Typical measurement volumes for PIV: ~ 50 cm³

HFSB allowed measurements up to >20,000 cm³

Bubble generator

1 mm

Large-scale tomo-PIV application Vertical Axis Wind Turbine (VAWT)

Large-scale tomo-PIV on VAWT Quantitative results

Isocontours of vorticity 200 rad/s

Large-scale tomo-PIV on VAWT Quantitative results

Large-scale tomo-PIV for sport aerodynamics

Current measurements are:

- Static: Athlete in static position in the wind tunnel test section
- Blind: Forces measured with balances – no link to the flow field

Large-scale tomo-PIV allows:

- Quantitative flow visualization
- Tailored optimization of position, shape, garment
- On-site measurements

The "Ring of Fire" concept

The "Ring of Fire" concept

Measurement system integrated in the training facility

>On-site measurement system

Unsteady aerodynamics measurements

Flow field visualization and integration

HFSB

lumination system

PIV cameras

Summary

- Particle image velocimetry allows non-intrusive velocity measurements
- Large-scale 3D measurement volumes via HFSB technology
- Aerodynamic forces from velocity fields
- Ring-of-fire: on-site 3D velocity and drag measurements
- > 20-24 July: First experiment on scaled ring-of-fire at TU Delft

