Effect of varied terrain and bicycle fit on Aerobic Power Production

Heinz Lugo, PhD. Research associate Loughborough University

Background

University

Some previous work

Methodology

• 20 minute self selected warmup.

- 20 minute FTP test.
 - Load and heart rate zone for subsequent tests.
- Own bike.

3 tests (1 week between each)

- 20 minute self selected warmup.
- 45 minutes at % of FTP load at aerobic zone.
 - 5 minutes per each of 9 possible positions.
- Test carried in custom made ergometer.
- Data recorded for the last minute of each position.

Saddle height	Saddle reach	Load set point
+1cm (109% inseam)	+5%	FTP torque
Current	Current	150% FTP torque
-1cm (25º knee flexion)	-5%	50% FTP torque

• The set point is set based on torque values due to the control used to simulate the load. However, by keeping the cadence within a set average value via the aerobic zone condition effectively power is being controlled.

Example: For a mean power of 265 Watts. To keep within the zone the participant keeps an average of 70 rpm. The load set is 40 Nm.

Test setup and workflow

Some issues found along the way: EMG onset/offset

Issues found along the way: Circular nature

Right detection display issue

Muscle Id -+ LVL -+ RVL -+ LGM -+ RGM -+ LBP -+ RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBF

Power output: some results for high load (40 Nm)

Power Id - Left - Right - Net

Power Id - Left - Right - Net

Power Id - Left - Right - Net

Power Id - Left - Right - Net

Power Id - Left - Right - Net

Position 9

195 180 165

Power Id - Left - Right - Net

+5%

120

135

150

345 360 15

330

300

240

225

210

- 285

404 -3561 -213: 165 2-2f 2-2f 2-2f

1cm

There is a shift on where the max net power occurs. We have to check if this is significant or not.

Current

-1cm

Power output: some results for high load (40 Nm)

There is a difference between the mean power, especially at the early stages.

Power output: some results for high load (40 Nm)

Loughborough University

EMG: some results (40 Nm)

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

muscleid 🔸 LVL 🔶 RVL 📥 LGM 🛥 RGM 🛶 LBP 🔶 RBP

muscleid 🔸 LVL 🔸 RVL 🔸 LGM 🔸 RGM 🛶 LBP 🔸 RBP

muscleid - LVL - RVL - LGM - RGM - LBP - RBP

There is no change in the muscle activation timings or duration.

EMG: some results (40 Nm)

Muscle Id 🔶 LVL 🔶 RVL <table-cell-rows> LGM 🛹 RGM 🛹 LBP 🛶 RBP

Muscle Id - LVL + RVL + LGM - RGM + LBP + RB

Muscle Id - LVL - RVL - LGM - RGM - LBP - RBP

Muscle Id 🔶 LVL 🔶 RVL <table-cell-rows> LGM 🛶 RGM 🛶 LBP 🛶 RBP

tuscle Id 🔸 LVL 🔸 RVL <table-cell-rows> LGM 🛶 RGM 🛶 LBP 🛶 RBP

Muscle Id 🔸 LVL 🔶 RVL 🔸 LGM 🛶 RGM 🛶 LBP 🛶 RBP

luscle Id 🔸 LVL 🔸 RVL <table-cell-rows> LGM 🔸 RGM 🔸 LBP 🔸 RBP

luscle Id 🔸 LVL 🔸 RVL 🛨 LGM 🗰 RGM 🕶 LBP 🛶 RBP

Muscle Id 🔸 LVL 🔸 RVL <table-cell-rows> LGM 🖛 RGM 🛶 LBP <table-cell-rows> RBP

There is predominance of RVL over LVL. The same does not clearly occur for other muscles.

EMG: some results (40 Nm)

Position 3

No difference on either rise or fall times of EMG.

Position 2

- For the positions tested there seems to be a difference on both the location of the maximum net power and the magnitude of the mean net power. Significance of the differences will be evaluated.
- The EMG analysis showed a predominance of the right leg specially for the Vastus Lateralis.
- At this point the results found are limited but an analysis tool for EMG, torque, and CODA analysis and synchronisation has been developed. A trial with several participants is being conducted currently.
- We do not expect to find general rules rather individual guidelines for setup to improve aerobic performance. On this guidelines we will include both anthropometric measures and comfort.

Questions

