Internal Mechanical Power During Cycling Using Non-Circular Versus Circular Chainrings

Hedda Giorgi PhD, Mark Andrews MSc, Mark Osborne PhD

Background:

Non-circular chainrings are typically characterised by:

- A decreased radius when the crank is around TDC & BDC
- An increased radius when the crank is around 90°

Q-Rings

 Conflicting findings on effects on physiological, kinematic, EMG and performance variables for maximal and submaximal cycling (Malfait et al. 2010; Martinez et al. 2006; Mateo-March et al. 2010, 2012, 2014; O'Hara et al. 2012; Peiffer & Abbiss 2010; Strutzenberger et al. 2014)

Internal Mechanical Power

The rate of energy required to move the limb segments against gravitational and inertial forces

- Physiological Approach
 Assumes Total P_{mech} = EP + IP
- $IP_{met} = x-intercept_{EP-MP \ linear \ regression} \cdot DE$
- Biomechanical Approach
 - There may be a transfer of energy between EP and IP, i.e., IP ≠ EP + IP

$$IP_{mech} = |P_{mj,hip} + P_{mj,knee} + P_{mj,ankle}| + P_{fj,hip} - P_{pedal}$$

IP is dependent on:

- **Gravity**
- The translational and rotational displacements of the limb segments
- The linear and angular velocities of the segments
- **7** The mass of the segments
- The distribution of mass along the segments

IP & Rotor Q-Rings

- Physiological differences inconsistent findings in the literature; a change in VO₂ or metabolic power could indicate a change to IP for the same EP and cadence
- Changes to hip muscle joint power reported by Strutzenberger et al. (2014) may indicate a change to IP:

$$IP_{mech} = |P_{mj,hip} + P_{mj,knee} + P_{mj,ankle}| + P_{fj,hip} - P_{pedal}$$

Methods

- 3 chainring conditions: circular, Rotor Q-Ring pos #1, Rotor Q-Ring pos #5
- 10 elite male road cyclists
 age 18.8 ± 2.0 years, mass 70.8 ± 7.9
 kg, stature 1.80 ± 0.05 m, training 20
 ± 3 h/wk & 558 ± 133 km/wk
- **7** 5-min bouts @ 100, 200 & 300 W
- **7** 80 rev ⋅ min⁻¹

Methods

Physiological Analysis

Gross VO₂ converted to total metabolic power (MP; W) using RER and energy equivalents

IP_{met} = x-intercept_{EP-MP} linear regression (adapted from Francescato et al. 1995)

Biomechanical Analysis

Three-segment, rigid-link system with fixed joint centres

Data was collected for 10 crank revolutions

Video recorded at 120 fps; left and right tangential and radial forces sampled at 100 Hz

Inverse dynamics analysis i_{f} i_{j} i_{j} i

Physiological Results

TOTAL METABOLIC POWER (W)	100 W	200 W	300 W
Circular Chainring	551 ± 19	947 ± 34	1403 ± 72
Q-Ring Position 1	558 ± 33	962 ± 60	1423 ± 59
Q-Ring Position 5	559 ± 29	955 ± 42	1427 ± 61
	IP _{met} (W)		
	Circular Chainring Q-Ring Position 1		105 ± 44
			94 ± 34
Q-Ring Position 5		114 ± 35	

Preliminary Mechanical Results

Preliminary Mechanical Results

Preliminary Mechanical Results

Conclusions & Discussion

- No change to the total metabolic cost or IP_{met}, using the two "end-point" settings of Rotor Q-Rings compared to circular chainrings, although conclusive comments cannot be made about IP until the biomechanical analysis is completed.
- Future investigations can look at the mechanical destinations of energy during performance trials with non-circular chainrings and also the effects of training/habituation.

hedda.giorgi@icloud.com @Hedda321 www.facebook.com/heddagiorgisportscienceconsultancy