

José R. Lillo Beviá (PhD student)

Human performance and Sports Science Laboratory Faculty of Sports Sciences University of Murcia San Javier (Murcia) Spain

Validity and Reliability of the Powertap P1 Pedals Power Meter

SCIENCE AND CYCLING CONFERENCE 2018

Several valid and reliable laboratory cycling ergometers (Gold Standard)

- SRM, Lode, Velotron, Wattbike, Monark, Ergoline...
- Not possible to use them for field testing

 Variations with their own bicycles (Handlebars, saddle, pedals, crank width, crank length and bicycle geometry.

Several valid and reliable cycling ergometers

- Tacx Fortius, Lemond Revolution, Elite Axiom, Kickr Power Trainer, Cycleops Hammer...
- Not possible to use them for field testing
- Some of them with a questionable validity

- Several valid and reliable specialized cycling power meter
- Garmin Vector, Power Tap Hub, SRM crankset, Stages, Look Keo pedals...
- Allows using them for field testing
- Several validate, several reproducible but whose validity remains in question and some unreliable

- Why Powertap P1 (Cycleops)
- Using the own bicycle (Testing at laboratory or at field)
- Easily Exchange between bicycles
- Reduced Price and weight

Purpose (laboratory)

- Validity
- Reliability
- Accuracy

Testing Procedures

-20

õ .0. ·····? Power (W)

Results

POWER OUTPUT										CADENCE					
			SRM (W)		PT P1 (W)			Rho		Bland Altman		SRM (rpm)		PT P1 (rpm)	
			Mean SD	CV	Mean SD	CV	SEM (W)	Spearmai value	n Bias (W)	SD Bias (W)	Mean SD	CV	Mean SD	CV	
70 CAD	SITTING	100 W	99±6	5.6%	97±4*	4.2%	0.7	0.989#		1.9	70.4±1.0	1.4%	71.7±1.1	1.5%	
		150 W	150±5	3.4%	148±5	3.0%	0.8		4.0	70.7±0.9	1.3%	70.7±1.0	1.5%		
		200 W	200±5	2.4%	198±4	2.1%	0.7		24	LoA	70.6±1.1	1.5%	70.9 ± 1.1	1.5%	
		250 W	251±5	2.0%	248±5	1.9%	0.8		-2.4 (-12.1 to 7.3)	70.7±1.0	1.4%	70.8 ± 1.0	1.3%		
		300 W	303±5	1.5%	300±5	1.6%	0.8				70.4±0.9	1.3%	70.9 ± 0.9	1.3%	
		350 W	356±4	1.2%	352±5*	1.4%	0.9				70.0±1.0	1.5%	70.6±1.0	1.5%	
85 CAD	SNILLIS	100 W	101±6	5.9%	96±6*	5.7%	1.0	0.987#		6.1	84.7±0.8	0.9%	85.0±0.8	0.9%	
		150 W	149±6	4.0%	145±5*	3.7%	0.9		-5.3 LoA (-17.6 to 7.0)	84.7 ± 0.8	0.9%	84.8 ± 0.8	0.9%		
		200 W	201±6	2.7%	196±5*	2.7%	0.9			84.8±0.9	1.1%	85.0±0.9	1.1%		
		250 W	252±5	1.9%	246±5*	2.2%	0.9			84.8±1.1	1.3%	85.0±1.1	1.8%		
		300 W	303±6	1.8%	298±6*	2.0%	1.1				84.9±1.2	1.4%	85.1±1.2	1.4%	
		350 W	355±5	1.5%	349±6*	1.7%	1.0				84.9±1.0	1.2%	85.1±1.0	1.7%	
100 CAD	SITTING	100 W	96±8	8.6%	91±7*	7.2%	1.1	0.999#		79	98.9±1.3	1.3%	99.7±1.2	1.3%	
		150 W	145±7	4.9%	139±5*	3.9%	0.9			98.9±1.4	1.4%	99.2±1.5	1.5%		
		200 W	197±8	4.1%	191±7*	3.7%	1.2		-73	LoA	99.6±1.2	1.2%	99.1±1.2	1.3%	
		250 W	248±7	2.9%	241±7*	2.8%	1.2		(-23.1 to 8.4)	99.6±1.3	1.3%	99.7±1.3	1.3%		
		300 W	298±7	2.4%	291±7*	2.4%	1.2				99.5±1.5	1.6%	99.8±1.6	1.6%	
		350 W	352±5	1.9%	342±8*	2.3%	1.3				99.8±1.9	1.9%	99.7±1.9	1.9%	
FC	STANDING	250 W	253±7	2.6%	241±5*	2.2%	0.9	0.927#		5.3	75.9±6.1	8.0%	74.9±11.0	14.7%	
		350 W	352±6	1.8%	345±5*	1.5%	0.9		-9.0	LoA	74.8±9.1	12.1%	73.5±12.9	17.6%	
		450 W	455±8	1.7%	446±6*	1.2%	1.0			(-19.7 to 1.7)	69.6±7.7	11.1%	68.5±10.7	15.7%	
FC	SITTING	500 W	499±9	1.8%	492±11*	2.2%	1.9		-7.0	3.5 LoA (-14.1 to 0.0)	90.0±10.1	11.2%	89.8±10.5	11.7%	

CAD = Cadence; FC-S = Free cadence standing; SD = Standard Deviation; CV = Coefficient of variation; rho Spearman = Spearman correlation coefficient; LoA = Limits of Agreement; * Significant differences compared to the SRM device; # significant Spearman correlation coefficient; (p < 0.05).

Discussion

Similar bias and 95 LoA (-2.4±4.8W to -7.3±7.9W)	 (Garmin Vector) 1.3±6.0W (Bouillod et al 2016) (Garmin Vector) -1.3±5.3W (Nimmerichter et al 2017) (Powertap hub) 2.9 ± 3.3W (Bertucci et al 2005)
Similar CV	 (Powertap hub) 1.7 to 2.7% and 1.2 to 2.0%
(2.0, 2.5 and 3.0% from 150 to 350W sitting,	(SRM crankset) (Bertucci et al 2005) (Commin Meeter) 2.82 and 0.05 (SDM error/cost)

2.0, 2.5 and 3.0% from 150 to 350W sitting, 2.2% at 500W and 1.6% standing • (Garmin Vector) 2.82 and 0.95 (SRM crankset) (Nimmerichter et al 2017)

Conclusions and practical applications

Valid and reliable	Small but significant differences between Powertap P1 and SRM	Accuracy
 Near perfect relationship between 100 and 350W (Sitting) at 70, 85 and 100 rev.min⁻¹ Low CV between SRM and Powertap P1 pedals 	 Low bias for power (-2 ± 4.8 W to -7.3 ± 7.9 W) for sitting and standing position. 	 Power Tap P1 pedals slightly underestimate the power output data in a consistent and direct proporcional manner to the pedalling cadence

The Powertap P1 pedals are an alternative to more expensive laboratory ergometers, allowing cyclists and thriatletes to use their own bicycle for testing, training or competición purposes.

Thank you very much for your attention!