

Muscle-tendon behaviour during sprint in road cyclists : Effect of the force-velocity condition

www.mip.univ-nantes.fr

Thursday, 5th July.

SCIENCE & CYCLING - NANTES

Maxime Robin

Introduction	Objectives & Hypothesis	Materials & Methods	Results / Discussion	Conclusion
	0	0 0	$\bigcirc \bigcirc \bigcirc$	0

Force- and Power-velocity Relationship in pedalling : measurement of muscle properties of the lower limbs

- **Pmax** and **Vopt** = Performance factor

Vandewalle et al. 1987, Driss et al. 2002, Dorel et al. 2010.

 Specific coordination of different muscles (mono- and bi-articular)

Introduction	Objectives & Hypothesis	Materials & Methods	Results / Discussion	Conclusion
• •	0	0 0	$\circ \circ \circ$	0

Ultrasound allowed to better understand the muscle behaviours and determine the contributions of tendinous and contractile structures

Introduction	Objectives	Materials & Methods	Results / Discussion	Conclusion
• •	•	0 0	$\circ \circ \circ$	0

Objectives

• Describe fascicle-tendon behaviours of a mono-articular muscle : vastus lateralis (VL) and a bi-articular muscle : gastrocnemius lateralis (GL) during maximal sprint cycling

 Investigate whether both fascicle and muscle-tendon unit shortening velocities are influenced by the force-velocity condition

Thursday, 5th July.

SCIENCE & CYCLING - NANTES

Maxime Robin

Introduction	Objectives & Hypothesis	Materials & Methods	Results / Discussion	Conclusion
• •			$\bigcirc \bigcirc \bigcirc$	0

Experimentation

Subjects :

11 well trained cyclists (13 000 kms/year): 21,9 \pm 4,5 years, 177,5 \pm 4,7 cm; 67,3 \pm 4,6 kg

Matériels :

LODE ergometer

MTU length

Grieve et al 1978, Visser et al 1980

Ultrafast ultrasound 500 - 2000 Hz

Fascicle length Litchwark et al. 2016

Introduction	Objectives & Hypothesis	Materials & Methods	Results / Discussion	Conclusion
• •		• •	$\bigcirc \bigcirc \bigcirc$	0

Single session. 1400 Fmax Force sur la pédale (N) 009 00 000 000 000 000 000 000 200 Vmax 0 50 100 150 200 0 250 Fréquence de pédalage (rpm) lsokinetic sprint 120 Isokinetic sprint 160 Isokinetic sprint 60 Isokinetic sprint 90 Isokinetic sprint Isokinetic sprint measurements 5 minutes rest Antropometric 2 minutes rest 5 minutes rest 5 minutes rest 5 minutes rest 5 minutes rest minutes rest -ode position Probe on GL Warm-up 10 Probe on VL 300w minutes 150w Ŝ ŝ \sim ኅ Two conditions were randomly repeated to check the reproducibility

* for significant differences between the considered condition and the direct higher condition

* for significant differences between the considered condition and the direct higher condition

Introduction	Objectives & Hypothesis	Materials & Methods	Results / Discussion	Conclusion
• •			$\bullet \bullet \bullet$	\bullet

To conclude...

VL and GL have different muscle-tendon behaviours

VL : Knee extensor

Concentric behaviour

The force-velocity condition influence the shortening velocities (MTU and fascicle)

GL : Knee and plantar flexors

More complex behaviour Eccentric - Concentric mode (MTU) : stretching of elastic structures (0 - 70°) Quasi-isometric mode (Fascicle) : Low fascicle shortening velocity Slight effect of pedalling rate

Perspectives :

- Orientating for strength training
- What behaviour in standing position?
- What effects of training ?

Thank you for your attention

MAXIME ROBIN

Laboratoire Motricité Interactions Performance - EA 4334 - NANTES

Laboratoire Motricité - Interactions - Performance EA 4334 Nantes - Le Mans

Data angle

High velocity sprint = decreased range of motion